

Mark Scheme (Results)

June 2024

Pearson Edexcel International Advanced Level in Chemistry (WCH15) Paper 01 Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2024 Question Paper Log Number P75782A Publications Code WCH15_01_2406_MS All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (Multiple Choice)

Question number	Answer	Mark
1	The only correct answer is B (green)	(1)
	<i>A</i> is incorrect because this is the colour of vanadium(IV)	
	<i>C</i> is incorrect because this is the colour of vanadium(II)	
	\boldsymbol{D} is incorrect because this is the colour of vanadium(V)	

Question	Answer	Mark
number		
2	The only correct answer is C (SO ₂ \rightarrow SO ₃ , +5 \rightarrow +4 \rightarrow +5)	(1)
	<i>A</i> is incorrect because this is not the step catalysed	
	<i>B</i> is incorrect because the vanadium is reduced	
	<i>D</i> is incorrect because this is not the step catalysed and the vanadium is reduced	

Question number	Answer	Mark
3(a)	The only correct answer is A (II \rightarrow III, VII \rightarrow II)	(1)
	B is incorrect because the final oxidation number for manganese is incorrect	
	<i>C</i> is incorrect because the iron is oxidised and the manganese is reduced	
	D is incorrect because the iron is oxidised and the initial and final oxidation numbers of manganese are incorrect	

Question number	Answer	Mark
3(b)	The only correct answer is C (0.450 mol dm ⁻³)	(1)
	A is incorrect because this is the number of moles of $FeSO_4$ in 25 cm ³	
	B is incorrect because this is the concentration of manganate(VII) ions	
	<i>D</i> is incorrect because this is the ratio of the two volumes	

Question number	Answer	Mark
4	The only correct answer is B (2.72 V)	(1)
	<i>A</i> is incorrect because this is 0.5% lower than the cell potential	
	<i>C</i> is incorrect because this is 1% higher than the cell potential	
	<i>D</i> is incorrect because this 5% higher than the cell potential	

Question	Answer	Mark
number		
5	The only correct answer is A $(Zn(s) Zn^{2+}(aq) Ni^{2+}(aq) Ni(s))$	(1)
	B is incorrect because the solid electrodes must be on the ends of the diagram	
	<i>C</i> is incorrect because oxidation should be on the left	
	<i>D</i> is incorrect because the solid electrodes must be on the ends of the diagram and oxidation should be on the left	

Question number	Answer	Mark
6		(1)
	The only correct answer is A (
	B is incorrect as this shows a negatively proportional relationship	
	<i>C</i> is incorrect as this shows a curve	
	<i>D</i> is incorrect as this line is not directly proportional	

Question	Answer	Mark
number		
7	The only correct answer is B (mass spectrometry)	(1)
	<i>A</i> is incorrect as infrared data provide evidence for benzene's structure	
	<i>C</i> is incorrect as thermochemical data provide evidence for benzene's structure and stability	
	D is incorrect as X-ray diffraction data provide evidence for benzene's structure	

Question number	Answer	Mark
8	The only correct answer is B (HNO ₃ + 2H ₂ SO ₄ \rightarrow NO ₂ ⁺ + 2HSO ₄ ⁻ + H ₃ O ⁺)	(1)
	<i>A</i> is incorrect because the reaction system is too acidic for the sulfate ion to be formed	
	C is incorrect because no NO_3^+ ion is formed	
	<i>D</i> is incorrect because hydroxide ion cannot exist in a strongly acidic solution	

Question number	Answer	Mark
9(a)	The only correct answer is B (57.7%)	(1)
	<i>A</i> is incorrect because this is the percentage atom economy of HBr	
	<i>C</i> is incorrect because this is the percentage of the mass of 2,4,6-tribromophenol compared to 3 bromine molecules	
	<i>D</i> is incorrect because the HBr is included as a useful product	

Question number	Answer	Mark
9(b)	The only correct answer is B (13.5 g)	(1)
	<i>A</i> is incorrect because this is 76.8% of 5.00 g	
	<i>C</i> is incorrect because this is the value for a 100% yield	
	<i>D</i> is incorrect because the value has been divided by 76.8 instead of multiplying	

Question number	Answer	Mark
10(a)	The only correct answer is C ($\begin{array}{c} 0^- \\ - \\ 0 \\ + \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	(1)
	<i>A</i> is incorrect because this is the zwitterion	
	B is incorrect because only one acid group has dissociated	
	<i>D</i> is incorrect because the amino acid is fully protonated	

Question number	Answer	Mark
10(b)(i)	The only correct answer is D ($\stackrel{HO}{\underset{O}{\overset{H}{\mapsto}}}_{O} \stackrel{HO}{\underset{H}{\overset{H}{\mapsto}}}_{O} \stackrel{HO}{\underset{H}{\overset{H}{\mapsto}}}_{H} \stackrel{HO}{\underset{H}{\overset{H}{\mapsto}}}_{O} \stackrel{HO}{\underset{H}{\overset{H}{\mapsto}}}_{O} \stackrel{HO}{\underset{H}{\overset{H}{\mapsto}}}_{O})$	
	A is incorrect because the peptide link is not on either α -carbon atom	
	B is incorrect because there is no aspartic acid monomer	
	<i>C</i> is incorrect because the peptide link is not on the glutamine α -carbon	

Question	Answer	Mark
number		
10(b)(ii)	The only correct answer is C (2)	(1)
	<i>A</i> is incorrect because there are two chiral centres on each	
	<i>B</i> is incorrect because there are two chiral centres on each	
	<i>D</i> is incorrect because there are two chiral centres on each	

Question number	Answer	Mark
11(a)	The only correct answer is D (mineral oil)	(1)
	<i>A</i> is incorrect because the boiling temperature of water is below the melting temperature of aspirin	
	B is incorrect because the boiling temperature of ethanol is below the melting temperature of aspirin	
	<i>C</i> is incorrect because the boiling temperature of hexane is below the melting temperature of aspirin	

Question number	Answer	Mark
11(b)	11(b) The only correct answer is D (2-hydroxybenzoic acid)	
	<i>A</i> is incorrect because ethanoic acid is soluble in water and won't crystallise	
	B is incorrect because ethanoic anhydride is hydrolysed by water and won't crystallise	
	<i>C</i> is incorrect because ethanol is soluble in water and won't crystallise	

Question number	Answer	Mark
12(a)	The only correct answer is C (magnesium)	(1)
	<i>A</i> is incorrect because the metal used is magnesium	
	<i>B</i> is incorrect because the metal used is magnesium	
	<i>D</i> is incorrect because the metal used is magnesium	

Question number	Answer	Mark
12(b)	The only correct answer is C (nucleophile)	(1)
	<i>A</i> is incorrect because it is not a redox reaction	
	B is incorrect because it is not a redox reaction	
	<i>D</i> is incorrect because the reagent acts as a nucleophile	

Question number	Answer	Mark
13(a)	0	(1)
	The only correct answer is $D($)	
	<i>A</i> is incorrect because the methyl group is in the wrong location on the amine	
	<i>B</i> is incorrect because the acyl chloride is not propanoyl chloride and the methyl group is in the wrong location on the amine	
	<i>C</i> is incorrect because this would be formed with ethanoyl chloride and the amine has an extra methyl group	

Question number	Answer	Mark
13(b)	The only correct answer is A (12.0 dm ³)	(1)
	B is incorrect because the value of the M_r is calculated incorrectly (127)	
	<i>C</i> is incorrect because the value of 2 moles of HCl are produced	
	<i>D</i> is incorrect because this value is 10 times too large	

Total for Section A = 20 marks

Section B

Question number	Answer	Additional guidance	Mark
14(a)(i)	• reduction	Ignore redox / equilibrium Ignore standard electrode potential Ignore gain/loss of electrons	1

Question number	Answer	Additional guidance	Mark
14(a)(ii)	• electrochemical (series)	Allow reduction potential (series) Allow standard electrode potential (series) Ignore galvanic Ignore reactivity	1

Question number	Answer	Additional guidance	Mark
14(b)(i)	• platinum / Pt (1) • 1 mol dm ⁻³ Cr ²⁺ and 1 mol dm ⁻³ Cr ³⁺ (1)	Accept platinised platinum / platinum black Allow 1 mol dm ⁻³ named soluble chromium(II) salts Allow named soluble chromium(III) salts giving 1 mol dm ⁻³ Cr ³⁺ solution Allow 1 mol dm ⁻³ Cr ²⁺ and Cr ³⁺ Ignore equimolar	2

Question number	Answer	Additional guidance	Mark
14(b)(ii)	An answer that makes reference to two from the following:		2
	• the Cr(II) is (rapidly) oxidised (by oxygen in the air) (1)		
	• the temperature may not be standard (298K) (1)	Allow the resistance in the circuit/voltmeter/wires may be too low	
		Allow there may be oxidation products on the electrodes	
		Allow the salt bridge may not be fully saturated	
		Ignore takes time for equilibrium to be established Ignore impurities	
		If no other mark is awarded allow other examples of non- standard conditions for 1 mark only	

Question number	Answer	Additional guidance	Mark
14(b)(iii)	 An explanation that makes reference to the following points: the (concentration of) Cr²⁺ decreases / Cr³⁺ increases (1) 	Allow the blue-green colour becomes green(er)	2
	• the (concentration of) Cr decreases / Cr increases (1)	Allow correct half equation of oxidation Allow Cr^{2+} oxidises/changes to Cr^{3+} Ignore colours if concentration is discussed Ignore equilibrium shifts to the left alone Ignore comments relating to salt bridge	
	• because E_{cell} is positive / +0.41 V (1)		

Question number	Answer	Additional guidance	Mark
-	Answer Answer that includes the following: (5, 8, 21, 28) • zinc converts dichromate(VI) ions to chromium(III) ions with an E^{Θ}_{cell} value of +2.09 V • and then to chromium(II) ions with an E^{Θ}_{cell} value of +0.35 V • iron(II) converts dichromate(VI) ions to chromium(III) ions with an E^{Θ}_{cell} value of +0.56 V • iton to chromium(II) ions as E^{Θ}_{cell} value is -1.18 V which is negative	Additional guidance	Mark 4
		If no other mark is awarded allow one mark for the four numbers in any order 5, 8, 21, 28 or values -0.76 V, -0.41V, +0.77 V and +1.33 V Accept equations in place of descriptions Allow positive numbers without + sign No TE on incorrect equations being used	

Question number	Answer	Additional guidance	Mark
14(c)(ii)	Answer that includes the following:		1
	• acidified solution	Allow acid / H ⁺ / H ₃ O ⁺ / named acid Allow acid catalyst Ignore standard conditions Ignore cell components e.g. salt bridge Ignore equations without ions highlighted	

⁽Total for Question 14 = 13 marks)

Question number	Answer	Additional guidance	Mark
15(a)(i)	Answer that makes reference to the following point:		1
	 (concentrated) sulfuric acid / H₂SO₄ 	Accept fuming sulfuric acid / sulfuric acid and SO ₃ Allow oleum / H ₂ S ₂ O ₇ Ignore HSO ₃ / H ₂ SO ₃ Ignore SO ₂ Ignore conditions Do not award dilute sulfuric acid /H ₂ SO ₄ (aq) Do not award nitric acid / HNO ₃ Do not award hydrochloric acid / HCl	

Question number	Answer	Additional guidance	Mark
15(a)(ii)	Answer that makes reference to the following point:correct structure	$\begin{array}{c} OH \\ CI \\ GH \\ O=S=O \\ OH \\ Allow SO_{3}H (any order) attached to the ring via sulfur atom \\ Ignore connectivity of phenol OH \end{array}$	1

Question number	Answer	Additional guidance	Mark
15(a)(iii)	An explanation that makes reference to the following points:		3
	• lone pair of electrons on the oxygen (1)	Allow lone pair of electrons on the OH Allow plurals Allow lone pair on O ⁻	
	 overlap/interact with the (π) electrons on the ring and increasing its electron density (1) 	Allow (lone pair) donated to the (π) electrons of the ring Allow are incorporated into the ring Do not award charge density Allow ring becomes more electron rich	
	• so (phenol) is more susceptible to electrophilic attack (1)	Allow "phenol is more attractive to electrophiles" Ignore increasing the reactivity of the ring Ignore reference to phenol being a nucleophile	

Question number	Answer	Additional guidance	Mark
15(b)	• ester	Accept ester bond / ester linkage /ester group	1

Question number	Answer	Additional guidance	Mark
15(c)	An answer that makes reference to three of the following points:		3
	• number of steps in each reaction sequence		
	• purification required (after each step)	Allow separation of mixtures	
	• availability/cost of reagents/catalysts		
	• toxicity of reagents/intermediates/by-products	Allow hazardous reagents/intermediates/by-products	
	• atom economy (of the product)		
	• (%) yield of each step	Accept yield of (final) product	
	• side reactions	Allow formation of byproducts	
	• carbon dioxide emissions	Allow emissions of greenhouse gases	
	• consideration of reaction conditions	Allow (total) energy required Allow cost of (reaction) conditions Allow high pressures/temperatures	
		Ignore unjustified costs/pollution/safety/yield/efficiency Ignore rates of reaction/time	

Question number	Answer	Additional guidance	Mark
15(d)(i)	An explanation that makes reference to the following points:		2
	• (the molecule contains two atoms of chlorine so) a 9:6:1 ratio is seen (1)	Allow ³⁵ Cl: ³⁷ Cl ratio is 3:1 Allow Cl ³⁵ is more abundant than Cl ³⁷	
	 because peak at 162 contains two ³⁵Cl isotopes, peak at 164 contains one ³⁵Cl and one ³⁷Cl, and peak at 166 contains two ³⁷Cl isotopes 	Allow three isotope combinations without m/z values	

Question number	Answer	Additional guidance	Mark
15(d)(ii)	 An answer that makes reference to the following point: (the presence of 1 atom of a) carbon-13 isotope 	Allow the presence of (1 atom of) a hydrogen-2 isotope / deuterium Ignore M+1 / n+1 peaks	1

(Total for Question 15 = 12 marks)

Question number	Answer	Additional guidance	Mark
16(a)	An answer that makes reference to the following points:	An example of an equation	2
	• correct species (1)	$[Fe(H_2O)_6]^{3+}(aq) + 3OH^{-}(aq) \rightarrow [Fe(OH)_3(H_2O)_3](s) + 3H_2O(l)$	
		Allow $Fe(OH)_3(s) + 6H_2O(l)$	
		Allow sodium carbonate $2[Fe(H_2O)_6]^{3+}(aq) + 3CO_3^{2-}(aq) \rightarrow Fe_2(CO_3)_3(s) + 12H_2O(l)$	
		Allow ammonia $[Fe(H_2O)_6]^{3+}(aq) + 3NH_3(aq) \rightarrow$ $[Fe(OH)_3(H_2O)_3](s) + 3NH_4^+(aq)$	
		Allow uncancelled cations Allow NaOH on LHS with Na ⁺ on RHS Square brackets are not required on the RHS	
	• balanced and state symbols (1)		

Question number	Answer		Additional guidance	Mark
16(b)(i)	An answer that makes reference to the following points: • 2+ / +2	(1)	Ignore 2	3
	• bidentate	(1)	Do not award didentate Ignore multidentate	
	• 6 and octahedral	(1)		

Question number	Answer		Additional guidance	Mark
16(b)(ii)	An explanation that makes reference to:			2
	• equation	(1)	$[Ni(H_2O)_6]^{2+} + 3(CH_3)_2NCS_2^- \rightarrow [Ni((CH_3)_2NCS_2)_3]^- + 6H_2O$ Allow Na ⁺ as a spectator ion in a balanced equation Ignore state symbols even if is incorrect Ignore extra charges on ligands in the complex	
	• ΔS_{system} increases as there are more particles (4 to 7)	(1)	Allow S/entropy increases as there are more moles Ignore "more products than reactants" Do not award more molecules TE on incorrect numbers in equation with entropy increasing Marks are independent	

Question number	Answer		Additional guidance	Mark
16(b)(iii)	An answer that includes:		Example of a calculation:	3
	• calculation of relative formula mass of precipitate	(1)	58.7 + 3(120.2) + 1 = 420.3	
	• calculation of mass in grams in 1 dm ³	(1)	$245 \div 1000 \div 5 = 0.049 / 4.9 \times 10^{-2} (\text{g dm}^{-3})$	
	• calculation of concentration	(1)	$0.049 \div 420.3 = 0.000117 / 1.17 \times 10^{-4}$ (mol dm ⁻³)	
			TE throughout	
			Alternative M2 and M3: $245 \div 1000 \div 420.3 = 0.000583 / 5.83 \times 10^{-4}$ (mol) $5.83 \times 10^{-4} \div 5 = 0.000117 / 1.17 \times 10^{-4}$ (mol dm ⁻³) Ignore SF except 1SF Correct answer with some working scores 3	

(Total for Question 16 = 10 marks)

Question number	Answer	Additional guidance	Mark
17(a)	An answer that makes reference to the following points:	An example of a mechanism: $+CH_3$ $+F_5$	3
	• curly arrow from, on or within circle to C of CH_3^+ (1)	Allow from within the hexagon Allow halogen carrier with $CH_3^{\delta^+}$	
	 structure of intermediate ion including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe	TE from M1 on incorrect electrophile	
	correct organic product (1)	Accept skeletal structure	

Question number	Answer	Additional guidance	Mark
17(b)	An explanation that makes reference to the following points:		3
	 this reaction produces (a pair of) enantiomers / a racemic mixture / racemate (1) 	Allow optical(ly active) isomers Allow "molecules that are (non-superimposable) mirror images" Do not award optically active solution Ignore "different" isomers Ignore chiral carbon	
	• the molecule is planar around the C=N bond (1)	Allow planar around reaction site Allow (trigonal) planar around the $^{\delta+}$ C Do not award "planar carbocation"	
	 the CN⁻/nucleophile can attack from either side / both sides / above or below (the double bond) (1) 	Ignore left and right Marks are independent	

Question number	Answer		Additional guidance	Mark
17(c)	An answer that makes reference to the following points:			3
	hydrolysis	(1)	Ignore modifiers	
	• aqueous acid solution / H ⁺ (aq)	(1)	Allow specific aqueous named strong acids or formulae Allow aqueous alkali solution followed by neutralisation with acid Do not award concentrated acid	
	• reflux	(1)	Further reagents negate M2 Allow heat M3 dependent on M1 or M2	

(Total for Question 17 = 9 marks)

Question number	Answer		Additional guidance	Mark
*18	This question assesses the student's logically structured answer with line reasoning.		Guidance on how the mark scheme should be applied.	
	points seen in answer in	ning.	 The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning. If there is any incorrect chemistry for example electrons moving through the cell, deduct mark(s) from the reasoning. If no reasoning mark(s) 	
	6 5-4 3-2 1 0	4 3 2 1 0		
	The following table shows how the structure and lines of reasoning	marks should be awarded for		
		for structure of answer and sustained lines of reasoning		
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2		
	Answer is partially structured with some linkages and lines of reasoning	1	awarded do not deduct mark(s). Comment: Look for the indicative marking points	
	Answer has no linkages between points and is unstructured	0	first, then consider the mark for the structure of the answer and sustained line of reasoning	

Inc	licative content	
IP 1	Fuel cells use the energy released on the reaction of a fuel /hydrogen with oxygen to generate a voltage	Allow "reaction releases energy as a flow of electrons" Allow "make electricity from a redox reaction" Allow generate an EMF due to potential difference in electrodes
IP2	2 (In an acid-based cell the hydrogen fuel loses electrons at the) anode / negative electrode and $H_2(g) \rightleftharpoons 2H^+(aq) + 2e^-$	Accept multiples Allow non-reversible equations Ignore omission of state symbols
IP3	(hydrogen ions move through the electrolyte where they combine with oxygen at the) cathode / positive electrode and $O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l/g)$	Accept multiples Allow non-reversible equations Ignore omission of state symbols
		Allow IP3 if two correct equations without anode or cathode or electrodes the wrong way around.
	only water produced whereas CO ₂ is produced in an internal nbustion engine (advantage of fuel cells)	Allow water is not a pollutant Allow no CO ₂ / greenhouse gases produced Allow more efficient (than combustion of fuels) Allow hydrogen is a renewable fuel Ignore "no pollution" alone
IP5	production/transport/storage of hydrogen is difficult (disadvantage of fuel cells)	Accept hydrogen explosive Accept fuels need to be in constant supply Allow most hydrogen produced from methane/ requires burning fossil fuels Allow limited infrastructure/filling stations Ignore expensive
IPe	Example of another fuel e.g. methanol (as it is hydrogen rich)	Allow methane/ethanol/methanol

(Total for Question 18 = 6 marks) Total for Section B = 50 marks

Section C

Question number	Answer	Additional guidance		
19(a)	• one correct tick	Example of a correct answer:	1	
		Allow harmful/irritant or any other indication in the second box only		

Question number	Answer	Additional guidance	Mark
19(b)(i)	An answer that makes reference to the following points: • six C in chain and correct side chains (1) • extension / trailing bonds (M2 dependent on M1 or a near-miss) (1)	Examples of a correct answer: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2

Question number	Answer		Additional guidance	Mark
19(b)(ii)	An answer that makes reference to the following points:		Example of a correct answer:	2
	• mass of OH groups and mass of whole polymer section (1	1)	51 and 132 Allow 17 and 44	
	• percentage calculation ((1)	38.6% / 39%	
			TE on 19bi Ignore SF except 1 SF Correct answer with some working scores (2)	

Question number	Answer	Additional guidance	Mark
19(b)(iii)	An explanation that makes reference to the following points:		2
	• (the OH groups in poly(ethenol)) can form hydrogen bonds with water (1)	Ignore references to how hydrogen bond form Allow hydroxyl / alcohol	
	• poly(ethenol) has high percentage of OH groups so soluble (1)	Allow a large number of OH group Allow (over) a third of the mass is OH groups Ignore "it has 3 OH groups" alone Ignore quoted % from (b)(ii) alone Do not award OH molecules	

Question number	Answer	Additional guidance	Mark
19(c)(i)			1
	• propane-1,2,3-triol	Allow propan–1,2,3–triol	
		Allow 1,2,3-propan(e)triol	
		Ignore errors in commas and dashes	
		Do not award 1,2,3-trihydroxypropane	

Question number	Answer	Additional guidance	Mark
19(c)(ii)	 An answer that suggests: improves (the polymer's) flexibility/fluidity/durability/plasticity 	Allow increases strength/elasticity Ignore references to time Do not award increases solubility	1

Question number	Answer	Additional guidance	Mark
19(c)(iii)		Example of a calculation:	4
	• volume of polymer (1)	$1\ 000\ 000 \div 1.19 = 840\ 340\ (cm^3) / 8.4034 \times 10^5\ (cm^3)$	
	• 0.11% of polymer (1)	$(0.11 \div 100) \times 840336.134 = 924.37 (\text{cm}^3)$	
	• mass of glycerol (1)	$924.369 \times 1.26 = 1164.7(g)$	
	• moles of glycerol (1)	$1164.7 \div 92 = 12.660 / 12.66 / 12.7 / 13.0 (mol)$	
		Ignore SF except 1SF	
		Marks can be awarded in any order, TE throughout Correct answer scores 4	

Question number	Answer	Additional guidance	Mark
19(d)	An answer that makes reference to the following points:	Example of calculation:	5
	• calculation of atoms of carbon per molecule (1)	$95.6 \div 24 = 3.98$ so 4 moles CO ₂ (per mole of molecules) / 4 carbon atoms per molecule	
	• calculation of atoms of hydrogen (1)	54.1 \div 18 = 3.005 moles of water so (×2) = 6 hydrogen atoms per molecule	
	 identification of C=O bond peak with range/value or 	(Peak P (1735 cm ⁻¹)) Allow any number(s) in the range 1760 – 1700 cm ⁻¹ , functional groups can be ignored	
	identification of a functional group with its range (1)	(aldehyde) $1740 - 1720 \text{ cm}^{-1}$, (ester) $1750 - 1735 \text{ cm}^{-1}$, (ketones) $1720 - 1700 \text{ cm}^{-1}$ Accept absorbances labelled on spectrum	
	 identification of C=C bond peak with its range/value or alkene with its range (1) 	Peak Q (1645 cm ⁻¹) is in the range 1669 – 1645 Accept absorbances labelled on spectrum Allow numbers outside the range if identified as alkyl C=C	
		If no correct ranges or wavelengths are given then 1 mark can be scored for the identification of both bonds.	
	• correct displayed structure (1)	H O H C C C C H H H H H H Allow any compound with 4 carbons and 6 hydrogens and at least	
		one C=O. This does not have to match previous conclusions except:	
		If C=O is not identified then butadiene could score M5 as a TE Do not award acid structures	
		Do not award structures that omit a C=C bond	
		Ignore names even if incorrect	

Question number	Answer		Additional guidance	Mark
number 19(e)	 An answer that makes reference to the following points no risk of cross-contamination no need to wash (and dry) bags 	: (1) (1)	Allow laundry does not need to be handled Allow more hygienic Allow bags will not need to be disinfected Allow comment on conserved energy as bags are not washed (and dried)	2
			Ignore biodegradable Ignore references to time Ignore comments on disposal, cost and speed of manufacture	

(Total for Question 19 = 20 marks)

Total for Section C = 20 marks TOTAL FOR PAPER = 90 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom