

Mark Scheme (Results)

October 2019

Pearson Edexcel International Advanced Level In Chemistry (WCH12) Paper 01 Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2019 Publications Code WCH12_01_1910_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate. Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A Question	Answer	Mark
Number		
1	The only correct answer is C (1.20)	
	A is incorrect because this is the volume of 1 mol	
	B is incorrect because this is a factor of 10 out	
	D is incorrect because the inverse of the number of mols of lithium carbonate has been divided by 24.0	(1)

Question Number	Answer	Mark
2	The only correct answer is C (3)	
	A is incorrect because different isotopes of chlorine have been ignored	
	B is incorrect because different isotope combinations of chlorine have not been considered	
	D is incorrect because 35Cl/37Cl and 37Cl/35Cl give the same peak	(1)

Question Number	Answer	Mark
3	The only correct answer is D ($\Delta_f H$ (carbon monoxide) = -110.5 kJ mol ⁻¹)	
	A is incorrect because there are 2 mol of carbon in the equation and combustion is incomplete	
	B is incorrect because there are 2 mol of carbon monoxide in the equation	
	<i>C</i> is incorrect because the combustion is incomplete	(1)

Question Number	Answer	Mark
4	The only correct answer is D (London forces)	
	A is incorrect because covalent bonds are between atoms not molecules	
	B is incorrect because there are no hydrogen bonds as electronegativity of iodine is low	
	<i>C</i> is incorrect because there are no ions present	(1)

Question Number	Answer	Mark
5(a)	The only correct answer is C (Reaction 3)	
	A is incorrect because different species are oxidised and reduced	
	B is incorrect because different species are oxidised and reduced	
	D is incorrect because there is no change in oxidation state	(1)

Question Number	Answer	Mark
5(b)	The only correct answer is D (Reaction 4)	
	A is incorrect because neither reactant is acting as an acid or base	
	B is incorrect because this is a redox reaction	
	<i>c</i> is incorrect because neither reactant is acting as an acid or base and it is a redox reaction	(1)

Question Number	Answer	Mark
6	The only correct answer is C (barium sulfate is less soluble in water than magnesium sulfate)	
	A is incorrect because carbonate thermal stability increases down Group 2	
	B is incorrect because hydroxide solubility increases down Group 2	
	D is incorrect because barium is more reactive than magnesium with water	(1)

Question Number	Answer	Mark
7	The only correct answer is C (chloride ions are stronger reducing agents than bromide ions)	
	A is incorrect because chlorine is more electronegative than bromine	
	B is incorrect because chlorine is more reactive than bromine	
	D is incorrect because chloride ions are stronger reducing agents than fluoride ions	(1)

Question Number	Answer	Mark
8	The only correct answer is A (SrBr ₂)	
	B is incorrect because sodium produces a yellow flame test	
	C is incorrect because although the flame test would be red the silver halide ppt would be white	
	D is incorrect because the flame test would be green and the silver halide ppt would be yellow and insoluble in concentrated ammonia	(1)

Question Number	Answer	Mark
9(a)	The only correct answer is B (0.50)	
	A is incorrect because 0.050 is the number of moles produced	
	<i>C</i> is incorrect because the solution concentration is assumed to be the same as the alkali	
	D is incorrect because the solution concentration is assumed to be equal to that of the acid	(1)

Question Number	Answer	Mark
9(b)	The only correct answer is B (± 0.20%)	
	A is incorrect because both solutions have been considered	
	<i>C</i> is incorrect because the uncertainty has not been doubled	
	D is incorrect because the volume measured has been ignored	(1)

Question Number	Answer	Mark
10	The only correct answer is A (NaCl and NaClO)	
	B is incorrect because both products are the result of oxidation	
	C is incorrect because the reaction is not heated and the solution is not concentrated	
	D is incorrect because both products are the result of oxidation	(1)

Question Number	Answer	Mark
11	The only correct answer is D (SO ₃)	
	A is incorrect because H_2S is a product	
	B is incorrect because I ₂ is a product	
	C is incorrect because S is a product	(1)

Question Number	Answer	Mark
12	The only correct answer is B (decreasing the concentration of the hydrochloric acid)	
	A is incorrect because an increase in reactant concentration would reduce the time taken	
	C is incorrect because raising the temperature would reduce the time taken	
	D is incorrect because adding a catalyst would reduce the time taken	(1)

Question Number	Answer	Mark
13(a)	The only correct answer is A (increase rate, decrease yield)	
	B is incorrect because an increase in temperature would increase the rate	
	C is incorrect because the equilibrium would move to the left, i.e. endothermic direction	
	D is incorrect because an increase in temperature would increase the rate and the equilibrium would move to the	
	left, i.e. endothermic direction	(1)

Question Number	Answer	Mark
13(b)	The only correct answer is C (increase rate, increase yield)	
	A is incorrect because an increase in pressure would increase the yield	
	B is incorrect because an increase in pressure would increase the rate and yield	
	D is incorrect because an increase in pressure would increase the rate	(1)

Question Number	Answer	Mark
14	The only correct answer is B (2-chloro-2-methylpropane)	
	A is incorrect because a primary alcohol would be formed which would be oxidised	
	C is incorrect because a primary alcohol would be formed which would be oxidised	
	D is incorrect because a secondary alcohol would be formed which would be oxidised	
		(1)

Question Number	Answer	Mark
15(a)	The only correct answer is B (oxidising propan-1-ol to propanal)	
	A is incorrect because reducing an alcohol would produce an alkane	
	C is incorrect because reducing propanal would produce propan-1-ol	
	D is incorrect because oxidising propan-1-ol would produce propanal or propanoic acid	(1)

Question Number	Answer	Mark
15(b)	I5(b)The only correct answer is A (propan-1-ol)	
	B is incorrect because propan-2-ol would not be expected to form a ${}^+CH_2OH$ fragment	
	C is incorrect because propanal would not be expected to form a ${}^+CH_2OH$ fragment	
	D is incorrect because propanone would not be expected to form a $^+$ CH ₂ OH fragment	(1)

Question Number	Answer	Mark
15(c)	The only correct answer is C (propanal)	
	A is incorrect because propan-1-ol would have a broad absorption at 3750-3200 cm ⁻¹ due to –OH	
	B is incorrect because propan-2-ol would have a broad absorption at 3750-3200 cm ⁻¹ due to –OH	
	D is incorrect because the absorption due to C=O in propanone would be at 1720-1700 cm ⁻¹ and C-H	
	stretching vibrations at 2775-2700 cm ⁻¹ would be absent	(1)

(Total for Section A = 20 marks)

Section **B**

Question Number	Answer	Additional Guidance	Mark
16(a)	correct balanced equation	Example of equation: Ca + 2H ₂ O \rightarrow Ca(OH) ₂ + H ₂ or multiples	(1)
		Allow Ca + H ₂ O \rightarrow CaO + H ₂ Ignore state symbols even if incorrect	

Question Number	Answer		Additional Guidance	Mark
16(b)	An explanation that makes reference to the following points:			(2)
	• concentration of hydroxide ions is greater	(1)	Allow more hydroxide ions are in solution	
	 calcium hydroxide is more soluble than magnesium hydroxide 	(1)	Allow the solubility of the hydroxides increases going down Group 2 reverse argument	

Question Number	Answer	Additional Guidance	Mark
16(c)(i)	correct ionic equation	Example of equation:	(1)
		$CO_3^{2-} + 2H^+ \rightarrow CO_2 + H_2O$	
		Ignore state symbols even if incorrect	
		Do not award $H_2CO_3 / H^+ + HCO_3^-$ as final products	

Question Number	Answer		Additional Guidance	Mark
16(c)(ii)			Example of equation:	(2)
	correct balanced equation	(1)	$CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(I)$	
	• state symbols	(1)	M2 depends on M1 Allow equation near miss e.g. Ca(OH) ₂ +CO ₂ >CaCO ₂ +H ₂ O or all correct species being present	

Question Number	Answer		Additional Guidance	Mark	
16(d)	 calculation of the amount of Mg(OH)₂ calculation of <i>M</i>_r Mg(OH)₂ 	(1) (1)	Example of calculation: Amount of Mg(OH) ₂ = 0.150 \div 2 = 0.075 (mol) M_r Mg(OH) ₂ = 58.3	(3)	
	 calculation of mass Mg(OH)₂ and answer given to 2 or 3 SF 	(1)	Mass of Mg(OH) ₂ = 0.075×58.3 = 4.3725 (g) = $4.4 / 4.37$ (g)		
			Allow if Mg = 24 then <i>M</i> _r = 58 and mass = 4.4 / 4.35		
			Correct answer to 2 or 3 SF with no working scores (3)		

(Total for Question 16 = 9 marks)

Question Number	Answer		Additional Guidance	Mark
17(a)(i)	(2)-methylpropan-1-ol and primarybutan-2-ol and secondary	(1) (1)	All 6 correct scores 3 4 or 5 correct scores 2 2 or 3 correct scores 1	(3)
	• _{OH} and tertiary	(1)	Ignore bond lengths and bond angles Do not award displayed formula	

Question Number	Answer		Additional Guidance	Mark
17(a)(ii)	An explanation that makes reference to the following points:		Accept reverse argument (butan-1-ol has a higher boiling temperature than 2-methylpropan-2-ol because)	(2)
	 Identification of (at least) one of the intermolecular forces and a comparison of its strength in the two molecules 	(1)	the instantaneous dipoles-induced dipoles / London forces / dispersion forces / van der Waals forces are stronger between straight chains Allow There are more London forces OR the hydrogen bonding is stronger between straight chain molecules	
	• an explanation for this difference	(1)	 the straight chain molecule/ butan-1-ol has greater surface area / more points of contact OR as the -OH group is more exposed / less hindered (so less energy is needed to break the intermolecular forces) If the explanation is in terms of London forces, ignore 'hydrogen bonding is similar / same' Ignore 'references to"longer carbon chain" 	
			Do not award Any reference to longer carbon bonds/breaking covalent bonds	

Question Number	Answer	Additional Guidance	Mark
17(a)(iii)		Example of diagrams:	(2)
	• 0H—0 (1)		
	 bond O-H-O must be shown as (approximately) linear (1) and angle labelled as 180° 		
		OR H H H H H H - C - C - C - C - C - H H H H H H - C - C - C - C - C - H H H H H H H H H	
		Do not penalise omission of lone pair on the oxygen or errors in the carbon chain e.g. missing Hs	
		Do not award hydrogen bond shown as a solid line (M1) H—OH bond shown as 180° (M2) Incorrect -OH attachment to chain (M2)	
		ignore bond lengths	

Question Number	Answer	Additional Guidance	Mark
17(b)(i)	• balanced equation	$ \begin{array}{cccccccccc} H & H & H & H & H \\ H - C - C - C - C - O \\ H & H & H & H & + & 6 & O=O \end{array} $	(1)
		>4 O=C=O + 5 H−O−H	

Question Number	Answer		Additional Guidance	Mark
17(b)(ii)			Here, and throughout the paper do not penalise mol ⁻ for mol ⁻¹	
	 calculation or working of energy needed to break bonds 	(1) (1)	Energy to break all bonds: (3x347) + (9x413) + 358 + 464 + (6x498) = 8568 (kJ mol ⁻¹)	
	 calculation or working of energy released when bonds are made 	(1)	Energy released when all bonds made: (10x464) + (8x805) = 11080(kJ mol ⁻¹)	
	• calculation of energy change and give a sign		-11080 + 8568 = -2512 (kJ mol ⁻¹)	
			Do not award incorrect units	
			TE on incorrect balancing of equation and TE at each stage of calculation	
			Ignore SF except 1SF Correct answer no working scores (3) Comment	
			Common error is the use of 6.5 x 498 (forgets about the alcohol oxygen). This gives -2263 kJ mol ⁻¹ scores 2.	(3)

Question Number	Answer	Additional Guidance	Mark
17(b)(iii)	An answer that makes reference to the following points:		(2)
	 mean bond enthalpies do not refer to specific compounds such as butan-1-ol/ mean bond enthalpies are averages/mean for different molecules/bonds in different environments/compounds	lgnore just "mean bond enthalpies are an average"	
	gases OR mean bond enthalpy calculations do not include changes of state (1)	lgnore references to standard conditions Just 'different states'	

Question Number	Answer	Additional Guidance	Mark
17(c)(i)		Example of calculations:	(2)
	• calculation of energy produced per gram (1)	(–)2670 ÷ 74 = (–)36.081/36.1 / 36 (kJ g ⁻¹)	
	• calculation of energy produced per cm ³ (1)	36.1 x 0.81= 29.226/29.2 / 29 (MJ dm ⁻³)	
	OR calculation of moles in 1 cm³ 	0.81 / 74 = 0.010946 (moles)	
	• calculation of energy produced per cm ³ (1)	0.010946 x (−)2670 = 29.226/29.2 / 29 (MJ dm ⁻³)	
		Units, if given, must be correct in MJ dm ⁻³ Correct answer with no working scores (2) Ignore sign and SF except 1SF	

Question Number	Answer	Additional Guidance	Mark
17(c)(ii)	 An answer that makes reference to the following points: biobutanol has a longer hydrocarbon / alkane chain/ more electrons than bioethanol (1) 	lgnore references to polarity, non-polar parts	(2)
	 so more/stronger London forces / dispersion forces / Van der Waals forces between biobutanol and petrol (than bioethanol and petrol) (1) 	Allow London forces in biobutanol and petrol are similar Do not award just "biobutanol has stronger London forces than bioethanol"	

(Total for Question 17 = 17marks)

Question Number	Answer	Additional Guidance	Mark
18(a)(i)	 the arrow pointing to the C=C bond is incorrect and the arrow should be pointing away from the bond (1) the partial charge on the C in the intermediate is incorrect and it should be a full positive charge (1) 	Ignore references to lone pairs of electrons Either/both marks could be scored by annotations to the mechanism or using structures in the answer spaces	(2)

Question Number	Answer	Additional Guidance	Mark
18(a)(ii)	balanced equation(1)	$C_2H_4 + Cl_2 \rightarrow C_2H_3Cl + HCl$ Ignore state symbols (even if incorrect)	(3)
	 calculation of mass of chloroethene and total mass of reactants / products (1) calculation of % atom economy (1) 	Mass of chloroethene = 62.5 Total mass of reactants / products = 99 % Atom economy = 62.5×100 99 = $63.131(\%)$ = $63.1(\%)$	
		TE on incorrect equation providing the product is chloroethene incorrect molecular masses no TE on incorrect atom economy expression If no other mark is scored correct expression for atom economy scores 1	
		Ignore SF except 1SF Correct answer with no working scores M3	

Question Number	Answer		Additional Guidance	Mark
18(b)	An answer that makes reference to the following points:			(2)
	• Atom economy (of process A is < 100% but) in process B it is 100%	(1)	Allow no other product formed in process B	
			lgnore just "process B has a higher atom economy than A"	
	 in process A HCl(g) is produced which is toxic / corrosive or catalyst for process B / Mercury / Mercury(II) chloride is highly toxic 	(1)	Accept reverse arguments e.g. A does not require a toxic catalyst	
			M2 - Allow both processes use non- renewable starting material	
			Do not award Ozone depletion	
			lgnore references to energy involved in either process/ greenhouse gases / acid rain	

Questior Number	Answer			Additional Guidance	Mark
*18(c)	logically structured reasoning. Marks are awarde structured and sh	d answer with linkages a d for indicative content ows lines of reasoning. e shows how the marks	and for how the answer is	 The mark for indicative content should be added to the mark for lines of reasoning. In general it would be expected that 5 or 6 indicative points would score 2 reasoning marks, and 3 or 4 indicative points would score 1 reasoning mark. A total of 2, 1 or 0 indicative points would score 0 marks for reasoning. Reasoning marks may be subtracted for extra incorrect chemistry. If there is any incorrect Chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded, do not deduct mark(s). 	(6)
	structure with lin sustained lines o	f reasoning	Number of marks awarded for structure of answer and sustained line of reasoning 2		
		roughout. ly structured with nd lines of reasoning.	1		
	Answer has no lin and is unstructur	nkages between points ed.	0		

Question	Answer	Additional Guidance	Mark
*18(c)	Indicative content	Vertical axis labelled fraction / proportion /	(6)
	The following table shows how the marks should be awarded for	percentage / number of molecules	
	structure and lines of reasoning.	Horizontal axis labelled <i>E</i> / energy	
	Indicative content		
	axes labelled correctly	Both curves start at 0 and be asymptotic to	
		the horizontal axis. The higher	
		temperature curve must have a lower	
	 shape of two curves at two different temperatures 	maximum and be moved to the right	
		Do not award asymptotes which are higher	
		than 30% of their peak height	
	 activation energy with and without a catalyst shown 	Number of T_1	
		molecules	
	 molecules with E>E_a/E=E_a can react/ collisions are successful 		
	 increasing temperature (increases energy of all molecules so) 	T ₂ >T ₁	
	increases molecules / collisions with $E > E_a/E = E_a$ (so rate		
	increases)		
		Energy, E E _A	
	adding a catalyst (provides an alternative pathway which)		
	lowers E_a so more molecules / collisions have $E > E_a / E = E_a$	E _a (catalyst)	
		1	
		Number of molecules with a given energy X	
		Y	
		Energy, E	
		All the information may be shown on one	
		axis grid and the two different	
		temperatures can be implied unless	
		incorrect.	

Question Number	Answer	Additional Guidance	Mark
19(a)(i)	$\begin{array}{c c} & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Allow all dots or all crosses Unbonded electron pairs may be at any position on circles or just inside the circles	(2)
	Allow either of the diagrams above	Ignore lines for covalent bonds	
	• At least one double bond correct (1)	Electrons do not have to be paired	
	• All other electrons correct (1)	Bonding electrons may be in the intersection space or on the lines bounding this space	

Question Number	Answer	Additional Guidance	Mark
19(a)(ii)	bond angle 120°	Allow 117º to 123º	(1)

Question Number	Answer	Additional Guidance	Mark
19(b)(i)	• two concordant titres had already been obtained	Allow Just 'titres are concordant' The (last two) titres are within 0.2 / 0.1 cm ³ only 10 cm ³ solution left so impossible to pipette a further sample or wtte only a limited/small amount of solution remains Do not award Three titres are concordant The (last two) titres are within ± 0.2 / \pm 0.1 cm ³	(1)

Question Number	Answer		Additional Guidance	Mark
19(b)(ii)			Example of calculation:	(3)
	• calculation of moles NaOH in mean titre	(1)	21.10/1000 x 0.005 = 1.055x10 ⁻⁴ / 0.0001055 (mol)	
	 moles sulfuric acid in 10 cm³ sample (1/2 moles NaOH) 	(1)	5.275/5.28 x 10 ⁻⁵ / 0.00005275 (mol)	
	 moles sulfuric acid in 40 cm³ (previous answer x 4) 	(1)	2.11 x 10 ⁻⁴ / 0.000211 (mol) Ignore SF except 1 SF	
			Correct answer with no working scores 3	

Question Number	Answer		Additional Guidance	Mark
				(4)
19(b)(iii)				(1)
	 moles SO₂ in 40 cm³ 		2.11 x 10 ⁻⁴ / 0.000211 (mol)	
	same as answer to (ii)	(1)		
			TE on 19(b)(ii)	

Question	Answer		Additional Guidance	Mark
19(b)(iv)			Example of calculation:	(3)
	• volume of atmospheric sample collected	(1)	10 x 30 = 300 (dm³)	
	moles of gas in atmosphere	(1)	<u>300</u> = 12.5 (moles) 24	
	• concentration SO ₂ in atmosphere	(1)	$\frac{2.11 \times 10^{-4}}{12.5}$	
	OR		= 1.688 x 10 ⁻⁵ / 1.69 x 10 ⁻⁵ / 0.00001688 = 16.88 / 16.9/ 17 (ppm)	
	• volume SO ₂ in atmosphere	(1)	2.11 x 10 ⁻⁴ x 24 = 5.064 x 10 ⁻³ (dm ³)	
	• volume of atmospheric sample collected	(1)	10 x 30 = 300 (dm³)	
	 concentration SO₂ in atmosphere 	(1)	5.064 x 10 ⁻³ / 300 = 1.688 x 10 ⁻⁵ / 1.69 x 10 ⁻⁵ / 0.00001688 = 16.88 / 16.9 /17 (ppm)	
			lgnore SF except 1SF Correct answer no working scores 3	
			TE on 19(b)(ii) and (b)(iii) and at each stage in (b)(iv)	

Question Number	Answer	Additional Guidance	Mark
19(c)(i)	• correct equation	$2O_3 \rightarrow 3O_2$ Or multiples Do not award equations with uncancelled species	(1)
		Ignore state symbols even if incorrect	

Question	Answer	Additional Guidance	Mark
Number			
19(c)(ii)	An answer which makes reference to two of the following:		(2)
		Ignore	
	 the chlorine free radical is regenerated 	the chlorine free radical acts as a catalyst	
	• many ozone molecules decompose for each free radical	references to increase in skin cancer	
	formed		
	chlorine free radical causes a chain reaction	Do not award references to global warming	

Question Number	Answer		Additional Guidance	Mark
19(d)(i)	• S (+)4 \rightarrow (+)6 (oxidation) • O (in O ₂) 0 \rightarrow -2 (reduction)	(1) (1)	Award 1 mark for sulfur is oxidised and oxygen is reduced	(2)

Question Number	Answer			Additional Guidance	Mark
19(d)(ii)	 Reactants energy level higher than that of products 	(1)	sc	D ₃ <u>+ H₂O</u>	(2)
	 Enthalpy change –200 (kJ mol⁻¹) labelled (dependent on correct M1) 	(1)	Enthalpy	-200 kJ mol^{-1} -200 kJ mol^{-1} $-H_2SO_4$ Reaction pathway	
				−200 kJ mol ⁻¹ d just 'reactants & products'	
			Transition st	product states, even if incorrect ate / intermediate hump low double headed arrows	

Question Number	Answer		Additional Guidance	Mark
19(d)(iii)	 carbon dioxide is a greenhouse gas / causes global warming / causes a rise in temperature sulfuric acid (from sulfur dioxide / trioxide) causes global cooling / causes a drop in temperature the effect from sulfur dioxide is greater than that of the carbon dioxide (because the temperatures were lower after the eruption) 	(1) (1) (1)	Ignore references to acid rain/ ozone depletion/radiation Allow sulfur trioxide for sulfuric acid Ignore sulfur dioxide is also a greenhouse gas	(3)

(Total for Question 19 = 21 marks) TOTAL FOR SECTION C =21 MARKS TOTAL FOR PAPER =80 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom