Pearson Edexcel

Mark Scheme (Results)

October 2019

Pearson Edexcel International Advanced Level In Chemistry (WCH06)
Paper 01 Chemistry Laboratory Skills II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2019
Publications Code WCH06_01_1910_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	Ammonia $/ \mathrm{NH}_{3} / \mathrm{NH}_{3}(\mathrm{~g})$	Ammonium / NH ${ }_{4}^{+}$	$\mathbf{(1)}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i) ~}$	$\mathrm{NH}_{4}^{+} /$ammonium (ions)	$\mathrm{NH}_{3}{ }^{(+)} /$ammonia (ion)	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	$\mathrm{Fe}^{2++2} /$ iron(II) $/\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ (ions) IGNORE (aq)		(1)

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Iron(III) hydroxide $/ \mathrm{Fe}(\mathrm{OH})_{3} /$ $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ IGNORE $\mathrm{Fe}^{3+} /(\mathrm{s})$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c)}$	$\mathrm{SO}_{4}{ }^{2-} /$ sulfate((VI)) (ions) IGNORE (aq)	$\mathrm{SO}_{3}{ }^{2-} /$ sulfate(IV) / sulfite	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d)}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} /$ $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} /$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} . \mathrm{FeSO}_{4} /$ $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$		(1)
ALLOW			
$\mathrm{Fe}\left(\mathrm{NH}_{4} \mathrm{SO}_{4}\right)_{2}$			
OR			
Any other combination of $\mathrm{Fe}^{2+}, \mathrm{NH}_{4}{ }^{+}$			
and $\mathrm{SO}_{4}{ }^{2-}$-ions that gives a neutral			
compound			
e.g. $\left(\mathrm{NH}_{4} \mathrm{Fe}\right)_{2}\left(\mathrm{SO}_{4}\right)_{3}$			
IGNORE Missing dots Any water of crystallisation			

(Total for Question 1 = 8 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	(W could be an alkene or an) arene / aryl / aromatic (compound)	ALLOW Benzene (ring) / phenyl IGNORE Just 'unsaturated' / 'cyclic'	(1)

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	(W contains) C=C / carbon-carbon double bond / alkene IGNORE phenol	Benzene	(1)

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	(W contains) OH / hydroxy(I) (group) ALLOW Alcohol and carboxylic acid / OH and COOH Alcohol and OH Carboxylic acid and OH	Hydroxide ion $/ \mathrm{OH}^{-}$	(1)

Question Number	Acceptable Answers	Reject	Mark
2(a)(iv)	(Heat W until it melts then add solid) sodium carbonate $/ \mathrm{Na}_{2} \mathrm{CO}_{3} /$ potassium carbonate $/ \mathrm{K}_{2} \mathrm{CO}_{3} /$ sodium hydrogencarbonate $/ \mathrm{NaHCO}_{3} /$ potassium hydrogencarbonate $/ \mathrm{KHCO}_{3}$	Just 'carbonate' Or 'hydrogen carbonate'	(2)
	(W contains carboxylic) acid $/ \mathrm{COOH}$ (group)		
ALLOW Carboxylic (group) IGNORE carboxy / carboxyl / carboxylate	(1)		

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	(A peak occurs at $m / e=$) 77		$\mathbf{(1)}$

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	(The peak is due to an ion with the formula) $\mathrm{C}_{8} \mathrm{H}_{7}^{+}$	Missing +	(1)
	ALLOW Symbols in any order i.e. $\mathrm{H}_{7} \mathrm{C}_{8}{ }^{+}$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}^{+}$ Skeletal / displayed / structural formulae IGNORE Formulae as working	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}^{+}$	

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	(There are) 6 / six (proton environments)		(1)

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	There are 4 / four protons on their own and 2 / two sets of 2 / two protons OR There are four environments each with a single proton and two environments each with two protons ALLOW The (relative) number / ratio of hydrogen atoms in each environment OR There are eight protons two pairs of which have equivalent environments OR The ratio of protons / proton environments is 1:1:1:1:2:2 OR The number of protons in the peaks with relative area 2 is double that in the peaks with relative area 1 or reverse argument OR There is 1 proton in the peaks with (relative) area 1 and 2 protons in the peaks with (relative) area 2 IGNORE References to splitting		(1)

Question Number	Acceptable Answers	Reject	Mark
2(d)			

(Total for Question 2 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	$\begin{align*} \mathrm{Mol} \mathrm{MnO}_{4}^{-} & =\frac{20.15 \times 0.0400}{1000} \\ = & 8.06 \times 10^{-4} / 0.000806(\mathrm{~mol}) \tag{1} \end{align*}$ TE on mean titre in (a)(i) $\begin{aligned} \text { Mol } \mathrm{V}^{3+} & =8.06 \times 10^{-4} \times 5 / 2 \\ & =2.015 \times 10^{-3} / 0.002015(\mathrm{~mol}) \end{aligned}$ TE on mol MnO_{4}^{-} $\begin{align*} & \text { Concentration } \mathrm{V}^{3+}=2.015 \times 10^{-3} \times 1000 \\ & (=0.2015) \\ & =0.202 / 2.02 \times 10^{-1}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ TE on mol V^{3+} Final answer must be to 3 SF Correct answer with no working scores (3)		(3)

Question Number	Acceptable Answers	Reject	Mark
3(a)(iii)	$\frac{0.05 \times 2 \times 100}{20.10}$ $=0.49751 / 0.4975 / 0.498 / 0.50 / 0.5(\%)$ Correct answer with no working scores (1) IGNORE SF including 1 SF / \pm symbol	$0.24876(\%)$	(1)

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	(Potassium hydroxide / hydroxide ions) will form a precipitate / solid with the cations / metal ions (in the beakers) ALLOW A precipitate / solid is formed with one or more of the specific ions in the solutions $-\mathrm{Zn}^{2+} / \mathrm{V}^{2+} / \mathrm{V}^{3+}$ OR It reacts to form zinc hydroxide / $\mathrm{Zn}(\mathrm{OH})_{2} /$ vanadium(II) hydroxide $/ \mathrm{V}(\mathrm{OH})_{2} /$ vanadium(III) hydroxide $/ \mathrm{V}(\mathrm{OH})_{3}$ OR It reacts with $\mathrm{Zn}{ }^{2+}$ to form a complex (ion) / $\mathrm{Zn}(\mathrm{OH})_{4}-$ OR It reacts with $\mathrm{Zn} \mathrm{n}^{2+} / \mathrm{V}^{2+} / \mathrm{V}^{3+}$ OR It forms a precipitate with the ions (in the beakers)	(1)	
	IGNORE Reference to potassium hydroxide is corrosive / alkaline OR Just 'it reacts with the solutions (in the beakers)' OR It reacts with H^{+}ions OR Reference to zinc		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	$\mathrm{Zn}+2 \mathrm{~V}^{3+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{~V}^{2+}$	Any equation with uncancelled electrons	(1)
	Multiples \rightleftharpoons provided equation is written in the direction shown Equation with cancelled electrons e.g. $\mathrm{Zn}+2 \mathrm{~V}^{3+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{~V}^{2+}+2 \mathrm{e}^{-}$		
IGNORE State symbols even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
3(b)(iv)	$(+0.44=E-(-0.76))$		(1)
	$E=-0.32(\mathrm{~V})$		
	Negative sign and value are needed		
	No TE on incorrect equation		

Question Number	Acceptable Answers	Reject	Mark
3(b)(v)	$\begin{equation*} -0.32=-0.26+0.059 \log \left[\mathrm{~V}^{3+}(\mathrm{aq})\right] \tag{1} \end{equation*}$ TE on (b)(iv) $\begin{aligned} & \log \left[\mathrm{V}^{3+}(\mathrm{aq})\right]=-1.0169 /-1.017 /-1.02 /-1.0 /-1 \\ & {\left[\mathrm{~V}^{3+}(\mathrm{aq})\right]=0.096172 / 0.09617 / 0.0962 / 0.096 / 0.1} \\ & \left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ ALLOW 0.095 from $\log \left[\mathrm{V}^{3+}(\mathrm{aq})\right]=-1.02$ TE on (b)(iv) for M1 only as final answers will be too high or too low (+0.32 V gives 6.77×10^{9} +1.2 V gives 5.57×10^{24} -1.2 gives 1.17×10^{-17}) IGNORE SF including 1SF Correct answer with no working scores (2)		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c)}$	The V^{2+} and V^{3+} solutions are mixed together in equal volumes OR The volume is doubled (when the solutions are mixed)	Water is added to dilute the solution	(1)
ALLOW The V^{3+} solution is diluted by the V^{2+} solution or vice versa IGNORE Different volumes are used in the two different methods Different conditions are used / not standard conditions			

(Total for Question 3 = 16 marks)

Question Number	Acceptable Answers	Reject	Mark
4(a)	Reagents Sodium nitrite / sodium nitrate(III) / NaNO_{2} and hydrochloric acid / HCl((aq)) ALLOW Nitrous acid / nitric(III) acid / HNO_{2} and hydrochloric acid / $\mathrm{HCl}((a q))$ IGNORE Concentration of hydrochloric acid Condition Temperature of $0-10^{\circ} \mathrm{C}$ ALLOW Any temperature or range of temperatures within the given range / less than $5^{\circ} \mathrm{C} /$ less than $10^{\circ} \mathrm{C} /$ use of an ice bath (1)	Just 'sodium nitrate / sodium nitrate(V) / $\mathrm{NaNO}_{3} /$ any other acid Just 'nitric acid' Reference to reflux or heat	(2)

Question Number	Acceptable Answers	Reject	Mark
4(b)(i)	The reaction is exothermic / releases heat ALLOW Reaction is vigorous / to prevent a vigorous reaction	Explosive	(1)
IGNORE Violent Volatile Diazonium salt is unstable / would decomposes Highly reactive To avoid splashing			

Question Number	Acceptable Answers	Reject	Mark		
4(b)(ii)	A (boiling) water $/ \mathrm{H}_{2} \mathrm{O}$ B reaction mixture OR benzenediazonium chloride $/ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$ (and potassium iodide)	Steam	(3)		
	ALLOW lodobenzene $/ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$ (and water) IGNORE Phenylamine C water / $\mathrm{H}_{2} \mathrm{O}$ out and D water $/ \mathrm{H}_{2} \mathrm{O}$ in	(1)		\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
4(b)(iii)	Prevents pressure building up	To create a vacuum	(1)
	ALLOW To prevent an explosion To allow gases / (water) vapour / air to escape As an (air) vent Prevents gases building up in the apparatus To maintain / control / release / reduce / decrease pressure		

Question Number	Acceptable Answers	Reject	Mark
4(b)(iv)	Use of a separating funnel (1)	(2)	
	Collect iodobenzene in the lower layer / iodobenzene is the lower layer (1)	Comparison with phenylamine Collect lower layer if it is the aqueous layer	IGNORE Just 'iodobenzene has a higher density than water'

Question Number	Acceptable Answers	Reject	Mark		
4(b)(v)	Add (anhydrous) calcium chloride / sodium sulfate / magnesium sulfate / calcium sulfate ALLOW Silica gel Correct formulae - $\mathrm{CaCl}_{2} / \mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{MgSO}_{4} / \mathrm{CaSO}_{4}$ IGNORE 'add a drying agent '	Conc sulfuric acid / anhydrous copper(II) sulfate / sodium hydroxide	(1)	\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
4(b)(vi)	$185-189\left({ }^{\circ} \mathrm{C}\right) /$	Any single number	$\mathbf{(1)}$
	$185-190\left({ }^{\circ} \mathrm{C}\right) /$		
	$185-191\left({ }^{\circ} \mathrm{C}\right) /$	Any range including	
	$186-189\left({ }^{\circ} \mathrm{C}\right) /$	188 as one of the	
	$186-190\left({ }^{\circ} \mathrm{C}\right) /$	stated numbers	
	$186-191\left({ }^{\circ} \mathrm{C}\right) /$		
$187-189\left({ }^{\circ} \mathrm{C}\right) /$	Incorrect units e.g. K		
	$187-190\left({ }^{\circ} \mathrm{C}\right) /$		
	$187-191\left({ }^{\circ} \mathrm{C}\right)$		

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

