Please check the examination details below before entering your candidate information

Candidate surname	Other names

Pearson Edexcel
International
Advanced Level

Centre Number	Candidate Number

Tuesday 12 January 2021

Morning (Time: 1 hour 30 minutes) | Paper Reference WCH11/01

Chemistry
International Advanced Subsidiary/Advanced Level
Unit 1: Structure, Bonding and Introduction to
Organic Chemistry

You must have:
Scientific calculator, Ruler

Instructions

• Use **black** ink or **black** ball-point pen.
• **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
• Answer **all** questions.
• Answer the questions in the spaces provided
 – **there may be more space than you need**.
• Show all your working in calculations and include units where appropriate.

Information

• The total mark for this paper is 80.
• The marks for **each** question are shown in brackets
 – **use this as a guide as to how much time to spend on each question**.
• You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
• A Periodic Table is printed on the back cover of this paper.

Advice

• Read each question carefully before you start to answer it.
• Try to answer every question.
• Check your answers if you have time at the end.
SECTION A

Answer ALL questions. Write your answers in the spaces provided.

For each question, select one answer from A to D and put a cross in the box
. If you change your mind, put a line through the box and then mark your new answer with a cross .

1. Which of these compounds has the same empirical and molecular formulae?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C_2H_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C_3H_8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C_4H_{10}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>C_5H_{10}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Total for Question 1 = 1 mark)

2. There are 6.02 × 10^{23} atoms in 0.25 mol of

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>H_2O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>BH_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>CH_4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Total for Question 2 = 1 mark)

3. Which aqueous solution has the **highest** concentration, in mol dm^{-3}, of chloride ions?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.1 g dm^{-3} HCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.1 g dm^{-3} NaCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.1 g dm^{-3} KCl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.1 g dm^{-3} BaCl_2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Total for Question 3 = 1 mark)

4. Which conversion has the **lowest** percentage atom economy (by mass) for the formation of CaCl_2?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ca + Cl_2 → CaCl_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Ca + 2HCl → CaCl_2 + H_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>CaCO_3 + 2HCl → CaCl_2 + H_2O + CO_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>CaCO_3 + 2NaCl → CaCl_2 + Na_2CO_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Total for Question 4 = 1 mark)
5 Which of these atoms has the most neutrons?

- A $^{109}_{49}$In
- B $^{124}_{50}$Sn
- C $^{123}_{51}$Sb
- D $^{124}_{52}$Te

(Total for Question 5 = 1 mark)

6 A p-block element in Period 3 of the Periodic Table reacts to form an ionic compound. What could be the electronic configuration of the ion formed by this element?

- A $1s^22s^22p^63s^2$
- B $1s^22s^22p^63s^23p^6$
- C $1s^22s^22p^63s^23p^63d^{10}$
- D $1s^22s^22p^63s^23p^63d^{10}4s^24p^6$

(Total for Question 6 = 1 mark)

7 The Period 2 element with the **highest** melting temperature is

- A aluminium
- B boron
- C carbon
- D silicon

(Total for Question 7 = 1 mark)

8 Which of these has the **greatest** electrical conductivity?

- A $\text{SF}_6(\text{g})$
- B $\text{H}_2\text{O}(\text{l})$
- C $\text{Hg}(\text{l})$
- D $\text{Na}_2\text{O}(\text{s})$

(Total for Question 8 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.
9 Which of these ions has the **greatest** ionic radius?

- **A** N^{3-}
- **B** F^{-}
- **C** Na^{+}
- **D** Al^{3+}

(Total for Question 9 = 1 mark)

10 Which of these ions has the **greatest** polarising power?

- **A** S^{2-}
- **B** Cl^{-}
- **C** K^{+}
- **D** Ca^{2+}

(Total for Question 10 = 1 mark)

11 Which of these does **not** have a structure formed by a giant lattice of carbon atoms?

- **A** C_{60} fullerene
- **B** diamond
- **C** graphene
- **D** graphite

(Total for Question 11 = 1 mark)

12 Which of these molecules is the **most** polar?

- **A** HF
- **B** OF_2
- **C** BF_3
- **D** CF_4

(Total for Question 12 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.
13 A substance is labelled with the hazard symbol shown.

![Hazard symbol]

What is the meaning of this symbol?

☐ A gloves must be worn
☐ B corrosive
☐ C do not store with flammable substances
☐ D oxidising

(Total for Question 13 = 1 mark)

14 What is the IUPAC name of this alkane?

![Alkane structure]

☐ A 2-ethyl-4,5-dimethylheptane
☐ B 6-ethyl-3,4-dimethylheptane
☐ C 3,4,6-trimethyloctane
☐ D 3,5,6-trimethyloctane

(Total for Question 14 = 1 mark)

15 Petrol, bioethanol and hydrogen are fuels.

All three of these fuels

☐ A burn to produce greenhouse gases
☐ B are overall carbon neutral
☐ C are overall sustainable
☐ D biodegrade rapidly

(Total for Question 15 = 1 mark)
Cyclopentane undergoes free radical substitution with bromine.

(a) Which of these is an overall equation for this reaction?

- A \(\text{C}_5\text{H}_8 + \text{Br}_2 \rightarrow \text{C}_5\text{H}_8\text{Br}_2 \)
- B \(\text{C}_5\text{H}_{10} + \text{Br}_2 \rightarrow \text{C}_5\text{H}_{10}\text{Br}_2 \)
- C \(\text{C}_5\text{H}_{10} + \text{Br}_2 \rightarrow \text{C}_5\text{H}_8\text{Br}_2 + \text{H}_2 \)
- D \(\text{C}_5\text{H}_{10} + \text{Br}_2 \rightarrow \text{C}_5\text{H}_9\text{Br} + \text{HBr} \)

(b) Which statement is not correct about this reaction system?

- A only the initiation step involves homolytic bond fission
- B only some bromine is converted to free radicals in the initiation step
- C propagation forms more product than termination
- D further substitution reactions are likely to occur

(c) Which free radical is least likely to form in a propagation step in this reaction system?

- A \(\text{C}_5\text{H}_9^* \)
- B \(\text{Br}^* \)
- C \(\text{C}_5\text{H}_8\text{Br}^* \)
- D \(\text{H}^* \)

(d) Which alkane could be formed in a termination step in this reaction system?

- A
- B
- C
- D

(Total for Question 16 = 4 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.
17 Which of these is **not** a way of limiting global problems caused by polymer disposal?

- [] A developing biodegradable polymers
- [] B exporting polymer waste
- [] C removing toxic waste gases produced by the incineration of polymers
- [] D reusing products made from polymers

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS
This question is about the element sulfur.

(a) Complete the diagram to show the electronic configuration for a sulfur atom in the ground state. Include labels for each subshell.

(b) Write an equation for the first ionisation energy of sulfur. Include state symbols.
(c) Explain why the first ionisation energy of sulfur is less than the first ionisation energies of both phosphorus and chlorine.

(d) A sample of sulfur contains four isotopes.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>^{32}S</th>
<th>^{33}S</th>
<th>^{34}S</th>
<th>^{36}S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage abundance</td>
<td>94.88</td>
<td>0.83</td>
<td>4.27</td>
<td>0.02</td>
</tr>
</tbody>
</table>

(i) State what is meant by the term *isotopes*, in terms of subatomic particles.

(ii) Calculate the relative atomic mass of sulfur in this sample.

Give your answer to two decimal places.
(e) The mass spectrum of a sample of sulfur with ^{32}S as the only isotope is shown.

(i) Calculate the number of sulfur atoms in the molecular ion.

You **must** show your working.

(1)

(ii) Suggest the **formula** of the **most stable ion** shown by this spectrum.

(Total for Question 18 = 14 marks)
19 This question is about the structure and bonding of Group 5 chlorides.

(a) Nitrogen trichloride, NCl₃, has a molecular structure.

 The displayed formula of a molecule of NCl₃ is shown.

 \[
 \begin{array}{c}
 \text{Cl} \quad \text{N} \quad \text{Cl} \\
 \text{Cl} \\
 \end{array}
 \]

 Complete the table for this molecule.

 (3)

Number of bond pairs around N atom	
Number of lone pairs around N atom	
Cl-N-Cl bond angle	
Name of shape of molecule	

(b) Under standard conditions, phosphorus(V) chloride (PCl₅) is a solid made up of PCl₅⁺ cations and PCl₆⁻ anions.

 Antimony(V) chloride (SbCl₅) is a liquid made up of SbCl₅ molecules.

 (i) Explain why PCl₅ has a higher melting temperature than SbCl₅.

 (2)
(ii) Draw a dot-and-cross diagram to show the bonding in a molecule of SbCl$_5$.

Use dots (●) to represent the Sb electrons, and crosses (x) to represent the Cl electrons. Show outer electrons only.

(c) At low temperatures, SbCl$_5$ converts to Sb$_2$Cl$_{10}$ which contains dative covalent bonds.

(i) State what is meant by the term dative covalent bond.

(ii) Complete the diagram to show the dative covalent bonds in Sb$_2$Cl$_{10}$.
(d) Arsenic also forms a pentachloride with the formula AsCl$_5$.

Give **one** possible reason why nitrogen is the only Group 5 element that does **not** form a pentachloride.

(Total for Question 19 = 10 marks)
This question is about the reactions of propene.

(a) Write an equation for the incomplete combustion of one mole of propene to form carbon dioxide, carbon monoxide, carbon and water as the only products. Include state symbols.

(b) State one similarity and one difference that would be seen when propene is mixed with separate samples of acidified potassium manganate(VII) solution and of bromine water.

(c) Propene reacts by addition polymerisation to form poly(propene).

Draw the structure of poly(propene), showing two repeat units.
(d) Propene reacts with bromine monochloride, BrCl, to form 1-bromo-2-chloropropane as the major product.

(i) Complete the diagram of bromine monochloride to show the dipole.

\[
\begin{array}{c}
\text{Br} \\
\text{Cl}
\end{array}
\]

(ii) Draw the mechanism for the formation of 1-bromo-2-chloropropane in this reaction.
Include curly arrows, and relevant lone pairs.
(e) Propene reacts with steam in the presence of an acid catalyst to form a mixture of the alcohols propan-1-ol and propan-2-ol.

Complete the mechanism for the formation of propan-2-ol, by adding curly arrows. Include the species formed in the final step.

(Total for Question 20 = 12 marks)
21 This question is about the production of squalane, a liquid alkane which occurs naturally in human skin and is used in cosmetics.

(a) Suggest two properties that make squalane useful in cosmetics.

(b) Give the molecular formula of squalane.

(c) Squalane can be produced from squalene, an alkene present in shark liver oil, by reaction with hydrogen gas in the presence of a suitable catalyst.

(i) Give the name of a suitable catalyst for the hydrogenation of squalene.

(ii) Squalane used in cosmetic products must contain no more than 0.2 ppm by mass of catalyst.

 Calculate the maximum permitted mass of catalyst in a product containing 50 g of squalane.
(iii) A reactor at 200°C contains 8500 mol of liquid squalene, and hydrogen gas at a pressure of 4.0×10^5 Pa.

Under these conditions, the complete hydrogenation of squalene requires 500 m3 of hydrogen gas.

Calculate the number of C=C bonds in one molecule of squalene.

You **must** show your working.

$$[pV = nRT \quad R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}]$$

(iv) Write the equation, using molecular formulae, for the complete hydrogenation of squalene to squalane.

State symbols are **not** required.
(d) Globally, 2.8 million dm3 of squalene is used each year. Traditionally squalene was obtained exclusively from shark liver oil, which is a mixture of liquids.

The liver of a shark yields 300 g of squalene.

(i) Suggest the name of a suitable technique to obtain squalene from shark liver oil.

(ii) Calculate the minimum number of sharks that would be needed to produce 2.8 million dm3 of squalene.

[Density of squalene = 0.86 g cm$^{-3}$]

(iii) Many large corporations now use squalane obtained entirely from plants. Squalane can be obtained sustainably from corn starch with a yield of 23% by mass.

The production of 1 tonne of corn starch requires 0.093 hectares of land.

Calculate the area of land, in km2, required to produce 2500 tonnes of squalane from corn starch.

[1 tonne = 1000 kg
1 hectare = 0.01 km2]
(e) The E-isomer of beta-farnesene can also be obtained from corn starch.

\[
\begin{align*}
E\text{-beta-farnesene} \\
\end{align*}
\]

(i) Explain why beta-farnesene exhibits geometric isomerism and has only two geometric isomers.

You may label the structure and use this in your answer.

(ii) Draw the **skeletal** formula of the geometric isomer of E-beta-farnesene, giving a reason why this is named the Z-isomer.
(f) The compound alpha-farnesene, $C_{15}H_{24}$, is a structural isomer of beta-farnesene.

The structural formula of alpha-farnesene is

$$(\text{CH}_3)_2\text{C}=\text{CHCH}_2\text{CH}_2\text{C}(\text{CH}_3)=\text{CHCH}_2\text{CH}=\text{C}(\text{CH}_3)\text{CH}=\text{CH}_2$$

(i) State what is meant by the term structural isomers.

(ii) State the number of geometric isomers of alpha-farnesene.

(iii) Complete the diagram to show another structural isomer of $C_{15}H_{24}$.

(Total for Question 21 = 24 marks)
The Periodic Table of Elements

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>(13)</th>
<th>(14)</th>
<th>(15)</th>
<th>(16)</th>
<th>(17)</th>
<th>(18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>H</td>
<td>Hydrogen</td>
<td>He</td>
<td>Helium</td>
<td>B</td>
<td>Boron</td>
<td>C</td>
<td>Carbon</td>
<td>N</td>
<td>Nitrogen</td>
<td>O</td>
<td>Oxygen</td>
<td>F</td>
<td>Fluorine</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
<td>Be</td>
<td>Beryllium</td>
<td>B</td>
<td>Boron</td>
<td>C</td>
<td>Carbon</td>
<td>N</td>
<td>Nitrogen</td>
<td>O</td>
<td>Oxygen</td>
<td>F</td>
<td>Fluorine</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
<td>Mg</td>
<td>Magnesium</td>
<td>Al</td>
<td>Aluminium</td>
<td>Si</td>
<td>Silicon</td>
<td>P</td>
<td>Phosphorus</td>
<td>S</td>
<td>Sulphur</td>
<td>Cl</td>
<td>Chlorine</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
<td>Ca</td>
<td>Calcium</td>
<td>Sc</td>
<td>Scandium</td>
<td>Ti</td>
<td>Titanium</td>
<td>V</td>
<td>Vanadium</td>
<td>Cr</td>
<td>Chromium</td>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Rb</td>
<td>Rubidium</td>
<td>Sr</td>
<td>Strontium</td>
<td>Y</td>
<td>Yttrium</td>
<td>Zr</td>
<td>Zirconium</td>
<td>Nb</td>
<td>Niobium</td>
<td>Mo</td>
<td>Molybdenum</td>
<td>Tc</td>
<td>Technetium</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>Cs</td>
<td>Caesium</td>
<td>Ba</td>
<td>Barium</td>
<td>La</td>
<td>Lanthanum</td>
<td>Hf</td>
<td>Hafnium</td>
<td>Ta</td>
<td>Tantalum</td>
<td>W</td>
<td>Tungsten</td>
<td>Re</td>
<td>Rhenium</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>Fr</td>
<td>Francium</td>
<td>Ra</td>
<td>Radium</td>
<td>Ac</td>
<td>Actinium</td>
<td>Rf</td>
<td>Rutherfordium</td>
<td>Db</td>
<td>Dubnium</td>
<td>Sg</td>
<td>Seaborgium</td>
<td>** Bh**</td>
<td>Bohrium</td>
</tr>
<tr>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

Key

- **Relative atomic mass**
- **Atomic symbol**
- **Name**
- **Atomic (proton) number**

Elements with atomic numbers 112-116 have been reported but not fully authenticated

* Lanthanide series
* Actinide series