Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH14)
Paper 01: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log Number P64626A
Publications Code WCH14_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	The only correct answer is $\mathbf{D}\left(\mathrm{SO}_{2}\right)$	$\mathbf{1}$
	\boldsymbol{A} is incorrect as although it has four atoms, it has ten electrons	
\boldsymbol{B} is incorrect as it has two atoms and two electrons		
C is incorrect as it has two atoms and only fourteen electrons		

Question Number	Correct Answer	Mark		
$\mathbf{2}$	The only correct answer is $\mathbf{A}(-198.8)$	$\mathbf{1}$		
\boldsymbol{B} is incorrect as number of moles of NH_{3} and H_{2} have not been considered				
\boldsymbol{C} is incorrect as number of moles of NH_{3} and H_{2} have not been considered and the expression to find the				
standard entropy of the system is the wrong way round				
\boldsymbol{D} is incorrect as expression to find the standard entropy of the system is the wrong way round			\quad	
:---				

Question Number	Correct Answer	Mark
$\mathbf{3}$	The only correct answer is \mathbf{C} (enthalpy change of formation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$) \boldsymbol{A} is incorrect as lattice energy is used to find the enthalpy change of solution \boldsymbol{B} is incorrect as enthalpy change of hydration is used to find the enthalpy change of solution \boldsymbol{D} is incorrect as enthalpy change of hydration is used to find the enthalpy change of solution	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4 ~ (a)}$	The only correct answer is C $\left(0.1 ~ \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\right)$ \boldsymbol{A} is incorrect as final pH would be greater than 2 (weak acid) B is incorrect as final pH would be greater than 2 (weak acid) \boldsymbol{D} is incorrect as final pH would be less than 1 (strong acid)	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{4 (b)}$	The only correct answer is A $\left(\mathrm{NH}_{3}\right)$	$\mathbf{1}$
	B is incorrect as strong base so vertical section would begin at a higher $\mathrm{pH} /$ / curve has a buffer region C is incorrect as strong base so vertical section would begin at a higher $\mathrm{pH} /$ curve has a buffer region D is incorrect as strong base so vertical section would begin at a higher $\mathrm{pH} /$ curve has a buffer region	

Question Number	Correct Answer	Mark
$\mathbf{4 (c)}$	The only correct answer is C (3)	$\mathbf{1}$
A is incorrect as only methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'	B is incorrect as only methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'	D is incorrect as methyl orange, bromophenol blue and bromocresol green would change colour in the vertical section of the 'curve'

Question Number	Correct Answer	Mark
$\mathbf{5}$	The only correct answer is $\mathbf{D}\left(S_{N} 1 ;\right.$ Two steps in mechanism) \boldsymbol{A} is incorrect as the halogenoalkane is tertiary so mechanism would be $S_{N} 1$ which has two steps \boldsymbol{B} is incorrect as although the mechanism has two steps the halogenoalkane is tertiary so mechanism would be $S_{N} 1$ \boldsymbol{C} is incorrect as although the mechanism is $S_{N} 1$, it would have two steps	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	The only correct answer is D (Step 2 is the rate determining step, the overall order is 3) \boldsymbol{A} is incorrect as Step 3 is fast \boldsymbol{B} is incorrect as Step 3 is fast C is incorrect as the overall order is 3	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is C (- gradient x R) \boldsymbol{A} is incorrect the Arrhenius equation has been rearranged incorrectly \mathbf{B} is incorrect as the gradient of the graph is negative, so this expression would give a negative value for an activation energy \boldsymbol{D} is incorrect as the gradient of the graph is negative, so this expression would give a negative value for an activation energy	$\mathbf{1}$

Question Number	Correct Answer	Mark
8 (a)	The only correct answer is C (3) A is incorrect as menthol has 3 chiral carbon atoms B is incorrect as menthol has 3 chiral carbon atoms D is incorrect as menthol has 3 chiral carbon atoms	1

Question Number	Correct Answer	Mark
$\mathbf{8 (b)}$	The only correct answer is B (Q)	$\mathbf{1}$
	A is incorrect as this carbon would produce a peak between 0 and 60 ppm C is incorrect as this carbon would produce a peak between 0 and 60 ppm \boldsymbol{D} is incorrect as this carbon would produce a peak between 0 and 60 ppm	

Question Number	Correct Answer	Mark
$\mathbf{8 ~ (c)}$	The only correct answer is B (Two)	$\mathbf{1}$
	A is incorrect as the oxidation product is a ketone, so would not react with $P C l_{5}$ C is incorrect as the oxidation product is a ketone, so would not react with Fehling's solution \boldsymbol{D} is incorrect as the oxidation product is a ketone, so would not react with $P C l_{5}$ but would react with 2,4- dinitrophenylhydrazine	

Question Number	Correct Answer	Mark	
$\mathbf{9}$ (a)	The only correct answer is B	$\mathbf{1}$	
	A is incorrect as the repeat unit has an extra oxygen C is incorrect as there is an extra carbon at the left-hand end of the repeat unit \boldsymbol{D} is incorrect as the repeat unit has an extra oxygen and the structure is incorrect		

Question Number	Correct Answer	Mark
$\mathbf{9 (b)}$	The only correct answer is B (hydrolysis)	$\mathbf{1}$
	A is incorrect as condensation is the reaction when the polymer forms C is incorrect as hydration is the addition of water to a $C=C$ bond D is incorrect as hydrogen has not been added in a reduction reaction	

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	The only correct answer is $\mathbf{D}\left(\mathrm{CH}_{3} \mathrm{COCl}\right)$ \boldsymbol{A} is incorrect as the reaction with ketone would NOT form an N-substituted amide \boldsymbol{B} is incorrect as any reaction with the carboxylic acid would be too slow at $R T$ \boldsymbol{C} is incorrect as any reaction with the ester would be too slow at RT	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1 (a)}$	The only correct answer is B (68 mm)	
	A is incorrect as it is a factor of 10 to large C is incorrect as it is the distance moved by the amino acids \boldsymbol{D} is incorrect as it is the expression for R_{f} has been inverted	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1 (b)}$	The only correct answer is A (argon)	
\boldsymbol{B} is incorrect as the carrier gas must be inert		
	C is incorrect as the carrier gas must be inert D is incorrect as the carrier gas must be inert	$\mathbf{1}$

Question Number	Correct Answer	Mark
12	The only correct answer is C \boldsymbol{A} is incorrect as the molar mass to $4 d p$ is 44.0265 B is incorrect as the molar mass to $4 d p$ is 44.0265 D is incorrect as the molar mass to $4 d p$ is 43.9898	1

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	The only correct answer is $\mathbf{D}(8)$	$\mathbf{1}$
	\boldsymbol{A} is incorrect as the number of optical isomers $=2^{n}$, where $n=$ number of chiral centres	
\boldsymbol{B} is incorrect as the number of optical isomers $=2^{n}$, where $n=$ number of chiral centres		
\boldsymbol{C} is incorrect as the number of optical isomers $=2^{n}$, where $n=$ number of chiral centres		

Question Number	Correct Answer	Mark
14	The only correct answer is D (Structure D) A is incorrect as it is identical to B and C B is incorrect as it is identical to A and C C is incorrect as it is identical to A and B	1

Section B

Question Number	Acceptable Answers	Additional Guidance	Mark
15 (a)	- correct expression for $\Delta \mathrm{S}_{\text {surroundings }}$ - correct evaluation and correct units and correct sign	Example of calculation $-\Delta H \div T=-25.7 \div 298$ $-0.086242 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /$ $-86.242 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ Ignore SF except 1 SF Correct answer with no working scores (2) Allow TE in M2 for use of $\Delta H \div T$ Comment Mark value first - if correct, with units and sign award 2 marks For units allow $\mathrm{kJ} \mathrm{K}^{-} \mathrm{mol}^{-} / \mathrm{J} \mathrm{K}^{-} \mathrm{mol}^{-}$	2

Question Number	Acceptable Answers	Additional Guidance	Mark
15(b)	An explanation that makes reference to: - $\Delta S_{\text {system }}$ must be positive - $\Delta S_{\text {system }}>86.24 \mathrm{~J} \mathrm{~mol}^{-1} /$ answer to (a) - (as compound does dissolve) $\Delta S_{\text {total }}$ is $>0 /$ positive	Allow ' $\Delta S_{\text {system }}$ is more positive' Allow $T \Delta S_{\text {system }}$ is greater in magnitude / more negative than ΔH ΔG is negative If answer to (a) is positive , then M1 and M2 will be - $\Delta S_{\text {system }}$ could be positive or negative - $\Delta S_{\text {system }}$ smaller in magnitude than answer to (a) / $T \Delta S_{\text {system }}$ is greater than ΔH	3

Question Number	Acceptable Answers	Additional Guidance	Mark
16(a)(ii)	• justification of first order	(First order with respect to BrO $_{3}$ - as straight line (through origin / 0,0)	$\mathbf{1}$
		Allow line with constant gradient	Allow rate is (directly) proportional to concentration

Question Number	Acceptable Answers	Additional Guidance	Mark	
16(b)(i)	\bullet deduce order wrt Br^{-}ions	(1)	$1^{\text {st } \text { order }}$	$\mathbf{2}$
	\bullet deduce order wrt H^{+}ions	(1)	$2^{\text {nd }}$ order	

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{1 6 (b) (i i) ~}$	• rate equation shown	rate $=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$	$\mathbf{1}$

Question Number	Acceptable Answers		Additional Guidance	Mark
16(b)(iii)	- rearrangement of rate equation - evaluation of k - units for k	(1) (1) (1)	$\begin{aligned} & \text { Example of calculation } \\ & k=\text { rate } /\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2} / \\ & k=1.52 \times 10^{-5} \div\left(0.062 \times 0.21 \times 0.4^{2}\right) \end{aligned}$ 7.2965×10^{-3} ignore SF except 1SF M1 can be subsumed within award of M2 $\mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}$ allow in any order Correct answer with no working scores (3) TE on (b)(ii) Allow use of data from Run 2 or Run 3	3

Question Number	Acceptable Answers		Additional Guidance	Mark
16(c)	An answer that makes reference to: - reactants adsorb onto palladium/catalyst surface - this weakens bonds in reactants - products then desorb (from catalyst surface)	(1) (1) (1)	Allow bromate ((V)) ions for reactants Allow 'bond/bind onto catalyst surface' Do not award absorb Ignore comments related to orientation Allow 'products de-adsorb' / products released (from catalyst surface) If no other mark is awarded allow one for: reaction follows an alternative pathway / route / mechanism of lower activation energy	3

Question	Acceptable Answers	Additional Guidance			Mark
17(a)	- calculation of moles of C, H and O (1)	element	moles	ratio	2
		C	66.7*12	5.56*1.3875	
			=5.56	= 4	
		H	11.1*1	11.1*1.3875	
			$=11.1$	= 8	
		0	22.2*16	1.3875*1.3875	
			=1.3875	= 1	
	molecular formula	Ratio $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ matches $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$			
	OR				
	- calculate molar mass of \mathbf{Y} (1)	Molar mass $=$	144 (g mo		
	- calculate \% of each element (1)	C=96 144×100	= 66.7\%		
		$\mathrm{H}=16 \div 144 \times 100$	= 11.1\%		
		$\mathrm{O}=32 \div 144 \times 100$	= 22.2%		

Question Number	Acceptable Answers		Additional Guidance	Mark
17(b)(i)	2,2-dimethylpropyl propanoate	(2)	Any name with '-propyl propanoate' scores 1 propyl-2,2-dimethyl propanoate scores 1 2,2-dimethyl propanoate scores 1 2,2-dimethylpropyl ethanoate scores 1	2
Question Number	Acceptable Answers		Additional Guidance	Mark
17(b)(ii)	 OR		Both structures required for mark Allow structures of propanoyl chloride / propanoic anhydride Allow any combination of correct skeletal, structural or displayed formulae. Ignore names even if incorrect Do not award connectivity to hydroxyl group via H atom	1

| Question
 Number | Acceptable Answers | Additional
 Guidance | Mark |
| :--- | :---: | :--- | :--- | :--- |
| 17(c)(i) | | Labels B C and D can be
 used interchangeably as
 long as the three proton
 environments are
 identified correctly.
 Allow 3 methyl groups
 to be circled individually
 but with a single label/
 labels pointing to all 3 | |

Question	Acceptable Answers			Additional Guidance	Mark
17(c)(ii)				1 mark for each row.	3
	Hydrogen environment	Splitting pattern of peak	Relative peak area	But If two or more rows are	
	(A)	(triplet)	(3)	whichever of these	
	B	quartet	2	Allow 2 marks for 3 correct	
	C	singlet	2	splitting patterns. OR	
	D	singlet	9	Allow 1 mark for 3 correct peak areas.	
	Note : allow ‘quadruplet' as alternative for quartet / 'single' as alternative for singlet		for quartet / r singlet	OR Allow 1 mark for correct row marked consequentially on the labelling in 17(c)(i)	

Question Number	Acceptable Answers	Additional Guidance	Mark
18	This question assesses the student's ability to show a coherent and logically structured answer with linkages and fully sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning Indicative Points	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and zero marks for linkages).	6

- IP1 Bonding in sodium chloride is (almost) 100\% ionic bonds
and as the theoretical and Born-Haber values are (very) similar
- IP2 Bonding in magnesium iodide has some covalent character
and as theoretical and Born-Haber values are (significantly) different
- IP3 Anion is (more) polarised in magnesium iodide (than sodium chloride)
- IP4 Magnesium ion has a greater charge density (than sodium ion), so greater polarising power
- IP5 Iodide ion is larger (than chloride ion), so is more easily polarised
- IP6 Magnesium iodide has stronger bonding than sodium chloride because the charge on the magnesium ion is twice as large (as the charge on the sodium ion)

If neither IP1 or IP2 scored can get 1IP for Bonding in sodium chloride is (almost) 100\% ionic bonds and bonding in magnesium iodide has some covalent character

ALLOW Magnesium ion has a greater charge/smaller than sodium ion, so greater polarising power
polarisation must be mentioned at least once in IP3, IP4 and IP5
Penalise use of 'atoms' instead of ions once only in IP3 IP4 and IP5
Penalise lack of comparative language once only in IP4, IP5 and IP6
Allow magnesium iodide has stronger bonding (than expected) due to polarisation / covalent character Allow both compounds have strong bonds as large amounts of energy needed to break up lattice / released when lattice forms / needed to break many strong bonds

Question Number	Acceptable Answers	Additional Guidance	Mark
19(a)(i)	- arrow from lone pair on carbon of cyanide ion to carbonyl carbon (1) - dipoles on carbon and oxygen in carbonyl bond and arrow from carbonyl bond to oxygen or just beyond - structure of intermediate, including charge - arrow from lone pair of oxygen in intermediate to hydrogen ion / H in HCN	Penalise absence of lone pair only once in M1, M3 and M4 If HCN used to protonate in step 2, dipole on HCN and curly arrow to break HCN bond are not required Ignore product	4

Question Number	Acceptable Answers	Additional Guidance	Mark
19(a)(ii)	The prediction is incorrect because - ethanal is planar around the carbonyl carbon atom / planar around the CHO - (so in Step 1) the (carbonyl) carbon can be attacked from above or below - hence both stereoisomers (of intermediate / product) will form in equal amounts or so product mixture is racemic / rotates the plane of planepolarised light equally in both directions	Accept planar at the site of the nucleophilic attack / planar about $\mathrm{C}=\mathrm{O}$ Do not award planar molecule / cation / intermediate Allow attack from any direction / either side Ignore 'has no effect on the plane of plane-polarised light' Ignore comments related to SN1 or SN2 If no other mark scored allow 1 mark for idea that product will rotate plane of plane polarised light as it has a chiral centre / carbon	3

Question Number	Acceptable Answers	Additional Guidance	Mark
19(a)(iii)	- hydrolysis - (dilute) hydrochloric acid / $\mathrm{HCl}((a q))$ - heat (under reflux) / reflux - $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NH}_{4}{ }^{+}$ OR $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NH}_{3} \tag{1} \end{equation*}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}+\mathrm{H}_{2} \mathrm{O}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{NH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}^{+-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$	Allow any strong acid by name or formula Allow sodium hydroxide followed by any (strong) acid Ignore conc / concentrated Allow 'boil' for heat Ignore 'warm' Allow NaOH for OH^{-} Allow HCl for H^{+} Ignore state symbols even if incorrect	4

Question Number	Acceptable Answers	Additional Guidance	Mark
19(b)	• $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	Allow $\mathrm{CH} 3 \mathrm{CH}(\mathrm{OH}) \mathrm{COONa}$ Allow $\mathrm{H}_{2} \mathrm{CO}$ 3	$\mathbf{1}$
	OR	Ignore state symbols even if incorrect Do not award if covalent bond shown between O and Na	

Question Number	Acceptable Answers	Additional Guidance	Mark
19(c)(i)	- (large concentration of) HCO_{3}^{-}react with (extra) H^{+}ions - equilibrium 1 moves to the RHS to keep concentration of H^{+} ions constant / $\mathrm{H}_{2} \mathrm{CO}_{3}$ forms to keep concentration of H^{+}ions constant - equilibrium 2 moves to RHS to form CO_{2} (which can be excreted from the body) / $\mathrm{H}_{2} \mathrm{CO}_{3}$ then forms CO_{2} (and water)	Allow ratio of $\left[\mathrm{HCO}_{3}\right.$-] to $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ remains constant / ratio of [salt] to [acid] remains constant Allow $\mathrm{H}_{3} \mathrm{O}^{+}$for H^{+} Allow equilibrium 1 moves to the RHS to remove excess H^{+}ions / $\mathrm{H}_{2} \mathrm{CO}_{3}$ forms to remove excess H^{+} ions If no reference to H^{+}and CO_{2} in M 2 and M3 but direction of movement of equilibria are correct in both cases, allow 1 mark	3

Question Number	Acceptable Answers	Additional Guidance	Mark
19(c)(ii)	- calculation of $\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ - K_{a} expression - rearrangement of K_{a} expression and calculation of $\left[\mathrm{HCO}_{3}^{-}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ (1) OR - calculation of $\mathrm{p} K_{a}$ - Henderson Hasselbach expression - rearrangement of K_{a} expression and calculation of $\left[\mathrm{HCO}_{3}^{-}\right]$: $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$	$\begin{align*} & {\left[\mathrm{H}^{+}\right]=10^{-7.41} /=3.8905 \times 10^{-8}} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \quad \text { Allow }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {in } K_{\mathrm{a}} \tag{1} \end{align*}$ Do not award $\left[\mathrm{H}_{2} \mathrm{O}\right]$ in K_{a} expression $\left[\mathrm{HCO}_{3}^{-}\right]:\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ $=4.5 \times 10^{-7} \div 3.8905 \times 10^{-8}=11.567: 1=11.6(: 1)$ Ignore SF except 1 Allow correct rounding of $\left[\mathrm{H}^{+}\right]$to 3.9×10^{-8} Allow $1: 0.086444$ if it's clear that 1 relates to $\left[\mathrm{HCO}_{3}{ }^{-}\right]$ $\begin{align*} & \mathrm{p} K_{\mathrm{a}}=-\log 4.5 \times 10^{-7}=6.3468 \tag{1}\\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left(\left[\mathrm{HCO}_{3}^{-}\right] \div\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\right) \end{align*}$ $7.41-6.3468=\log \left(\left[\mathrm{HCO}_{3}^{-}\right] \div\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\right)$ $\left[\mathrm{HCO}_{3}^{-}\right]:\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=11.567(: 1)$ Correct answer with no working scores (3) If final answer close, check for and allow correct rounding	3

(Total for Question 19 = 18 marks)
(Total for Section B=51 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(i)	When the pressure is increased - equilibrium moves to RHS and yield (of chlorine) increases (1) - as fewer gas molecules on the RHS (5:4)	Marking points are independent Allow 'forward reaction favoured so yield (of chlorine) increases' If numbers are given they must be correct Allow use of $4 / 5$ ratio to justify decrease in quotient / greater increase in denominator as total pressure increases, (so eqm moves (to RHS) to restore Kp) Allow 'change in pressure has no effect on value for K_{p}^{\prime}	3

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{2 0 (a) (i i)}$	When the temperature increases	Marking points are independent	$\mathbf{2}$
equilibrium moves to LHS as (forward) reaction is exothermic $(\mathbf{1)}$	Allow reaction moves in endothermic direction Allow increase in Treduces $\Delta S_{\text {surr }}$ and hence $\Delta S_{\text {total }}$ decreases		

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(iii)	When a catalyst is used • rate of backward and forward reactions increases by same amount	(1)	

Question	Acceptable Answers				Additional Guidance	Mark
20(b)(i)					For mole fractions allow e.g. $0.350 \div 1.325$ allow correct rounding Ignore SF except 1 SF	3
	Substance	Initial amount / mol	Equilibrium amount / mol	Mole fraction at equilibrium		
	HCl	0.850	0.350	0.26415		
	O_{2}	0.600	0.475	0.35849		
	$\mathrm{H}_{2} \mathrm{O}$	0	0.250	0.18868		
	Cl_{2}	0	0.250	0.189		
	Total moles at equilibrium $=\mathbf{1 . 3 2 5}$					
	All values correct scores (3)					
	M1 1 correct equilibrium amount			(1)		
	M2 other 2 correct equilibrium amounts			(1)		
	M3 Consequential total moles and mol fraction			(1)		

Question Number	Acceptable Answers	Additional Guidance	Mark
20(b)(ii)	$K_{\mathrm{p}}=p\left(\mathrm{H}_{2} \mathrm{O}\right)^{2} p\left(\mathrm{Cl}_{2}\right)^{2} \div p\left(\mathrm{HCl}^{4} p\left(\mathrm{O}_{2}\right)\right.$	Ignore parentheses	$\mathbf{1}$
		Do not award square brackets	

Question Number	Acceptable Answers	Additional Guidance	Mark
20(b)(iii)	- mole fractions converted to partial pressure - final value for K_{p} given to 2 or 3SF	Example of calculation allow TE from 20b(i) Allow e.g. for $\mathrm{pp}(\mathrm{HCl}) ; 0.26415 \times 1.5$ $\begin{aligned} & \frac{(0.28302)^{2}(0.28302)^{2}}{(0.39623)^{4}(0.53770)} \\ & =0.48407 \text { (Note }=0.48408 \text { if no rounding) } \\ & =0.48 / 0.484 \end{aligned}$ No TE for M2 for incorrect expression Check final answer if close, and allow if correct rounding used in working atm^{-1} allow TE for M3 from incorrect expression in (b)(ii)	3

Question Number	Acceptable Answers		Additional Guidance	Mark
20(b)(iv)	- recall of expression for $\Delta S_{\text {total }}$ - calculation of $\Delta S_{\text {total }}$	(1) (1)	$\begin{aligned} & \Delta S_{\text {total }}=R \ln K \\ & =8.31 \times-0.726 \\ & =-6.033\left(\mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$ Allow TE / rounded value from (iii) No TE for M2 from incorrect expression Ignore SF except 1 SF Ignore units even if incorrect NOTE $\Delta S_{\text {total }}=-6.0289$ if no rounding from (b)(iii) $\Delta S_{\text {total }}=-6.0993$ if 0.48 used from b (iii)	2

Question Number	Acceptable Answers	Additional guidance	Mark
20(c)	- general shape of increase from left to right ALLOW straight line - two vertical stages for melting and boiling - include the use of 273 K for melting and 373 K for boiling temperature either by labelling or position on x axis	Allow horizontal sections allowed between phase changes for M1 M3 is independent of M 2 , providing a line is drawn	3

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

