Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level in Chem istry (WCH16)
Paper 01: Practical Skills in Chem istry II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualific ations websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus .

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in educati on for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2022
Question Paper Log Number P71944A
Publications Code WCH16_01_2210_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit accord ing to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the totalmark for each question
- examples of responses that should NOT receive credit
/ means that the responses are alternatives and either answer should receive full
credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
$\mathrm{ecf} / \mathrm{TE} / \mathrm{cq}$ (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{1 (a) (\mathbf { i })}$	An answer that makes reference to the following point:	Allow 'round' brackets Ignore name Ignore absence of square brackets Ignore $\mathrm{Co}^{2+} / \mathrm{Co}^{2+}(\mathrm{aq})$	$\mathbf{1}$
	$\bullet\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$		

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{1 (a) (i i)}$	An answer that makes reference to the following point: $\quad \mathrm{SO}_{4}{ }^{2-}$	Allow $\mathrm{SO}_{4}{ }^{-2}$ Ignore name	$\mathbf{1}$

Question Number	Acceptable Answers	Additional Guidance	Mark
$\mathbf{1 (a) (\text { (iii) }}$	An answer that makes reference to the following point:	Accept pink solution turns blue Ignore shades Ignore reference to steamy/ misty fumes Do not award if given with any incorrect observation	$\mathbf{1}$
	\bullet a blue (solution forms)	Do not award incorrect initial colour	

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(iv)	An answer that makes reference to the following point:	Allow acid-base	$\mathbf{1}$
	\bullet deprotonation	Ignore precipitation Do not award ligand substitution / ligand replacement	

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(v)	An answer that makes reference to the following points: EITHER - (precipitate) dissolves - yellow / straw / brown solution forms - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ OR - yellow / straw / brown solution forms - which darkens / forms dark brown (solution on standing) - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	Ignore shades in both alternatives Allow (precipitate) disappears Allow blue colour dissolves Do not award if precipitate is not blue Blue ppt turns into yellow solution scores (2) Allow $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ Ignore absence of square brackets Allow red-brown Allow $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ Ignore absence of square brackets	3

Question Number	Acceptable Answers	Additional Guidance	Mark
1(b)	An answer that makes reference to the following points: - known mass of $\mathrm{CoCl}_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ (s) measured - heat sample (strongly) in crucible / evaporating basin (with lid using blue flame on Bunsen burner) - until mass of sample is constant (to ensure all water is removed / all $\mathrm{CoCl}_{2} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s})$ has broken down) - difference in (initial and final) mass (= mass of water removed)	Allow weight for mass Allow a clearly annotated diagram Do not award use of beaker/ conical flask/test tube Do not award use of heating mantle Ignore heat until all the water is removed/evaporated Allow M3 and M4 for method involving a desiccator/oven but not for the addition of drying agent Do not award M4 for response involving recrystallisation or distillation	4

Question Number	Acceptable Answers	Additional Guidance	Mark
2(a)	An answer that makes reference to the following points: - filter to remove sand / to separate the sodium hydroxide	(1)	M1 can be shown with a suitable labelled diagram Accept decant or description of Allow solid for sand Allow use of Buchner funnel Allow use of sieve Ignore hot/cold references to filtration
	- rinse (sand) with deionised / distilled water (to ensure all the sodium hydroxide solution is separated)	(1)	Allow rinse with solvent

Question Number	Acceptable Answers		Additional Guidance	Mark
2(b)	An answer that makes reference to the following points: - use of $\left(250 \mathrm{~cm}^{3}\right)$ volumetric flask - add deionised / distilled water and up to the mark and mix	(1)	Allow graduated / standard flask Do not allow beaker/conical flask/measuring cylinder M2 independent of M1 but reference to 'mark' or volume line or $250 \mathrm{~cm}^{3}$ required Allow any indication of mixing e.g. shake, invert, swirl Allow 'pure water' Just 'water' is insufficient unless qualified at some point	2

Question Number	Acceptable Answers	Additional Guidance	Mark
2(c)	- (M1) calculation of initial moles of NaOH AND calculation of moles of HCl - (M2) calculation of moles of NaOH in $250 \mathrm{~cm}^{3}$ - (M3) calculation of moles of NaOH that reacted with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ - (M4) calculation of mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ - (M5) calculation of percentage by mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ in fertiliser	Example of calculation $\begin{align*} & (20 \div 1000) \times 1=0.02(\mathrm{~mol}) \\ & (12.75 \div 1000) \times 0.0500=6.375 \times 10^{-4}(\mathrm{~mol}) \tag{1}\\ & 6.375 \times 10^{-4} \times(250 \div 25)=6.375 \times 10^{-3}(\mathrm{~mol}) \tag{1}\\ & 0.02-6.375 \times 10^{-3}=0.013625(\mathrm{~mol}) \tag{1}\\ & 0.013625 \div 2 \times 132.1=0.89993(\mathrm{~g}) \end{align*}$ Allow TE from M1 to M4 $(0.89993 \div 5.75) \times 100=15.651 \%=15.7 \%$ Allow TE from M4 to M5 if answer is $<100 \%$ Ignore SF Note penalise rounding errors once only in M1-M5 Final answer without working scores (5) 22.2% scores (4) omission of x10 in step 2 31.3% scores (4) omission of $\div 2$ in step 4 44.5% scores (3) omission of x10 and $\div 2$ 62.6% scores (4) multiplied by 2 instead of $\div 2$ Allow use of 132 for step 4	5

Question Number	Acceptable Answers		Additional Guidance	Mark
2(d)(i)	An explanation that makes reference to the following points: - NH_{3} (remaining) will react with the $\mathrm{HCl} /$ acid (in the titration) - so titre would be greater - so (it would appear that there is a) lower percentage of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (in the fertiliser)	(1) (1) (1)	Allow reference to neutralisation M2 dependent on some attempt at M1 such as ammonia remaining Allow less $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (in the fertiliser) M3 can be awarded provided there is reference to greater titre Allow (1) as a TE if titre is stated to be smaller which means the percentage will be higher	3

Question Number	Acceptable Answers	Additional Guidance	Mark
2(d)(ii)	An answer that makes reference to the following point: - place (damp) red litmus (paper into vapour) and which should remain red (if all NH_{3} removed)	Allow (litmus) goes blue if any NH_{3} remains Ignore reference to pungent smell Allow place (damp) universal indicator (paper) into vapour and which should remain yellow (if all NH_{3} removed) goes blue or purple if any NH_{3} remains	$\mathbf{1}$
		Allow place stopper of conc. HCl bottle near mouth of reaction vessel/ use $\mathrm{HCl}(\mathrm{g})$ and which will not form white smoke if NH_{3} all removed	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(a)	- calculation of mass of ethanol and calculation of mass of butanoic acid - calculation of moles of ethanol and calculation of moles of butanoic acid and statement that moles of butanoic acid > moles of ethanol / butanoic acid is in excess (because the ratio is 1:1)	Example of calculation $\begin{align*} & 5 \times 0.79=3.95(\mathrm{~g}) \\ & 10 \times 0.96=9.6(\mathrm{~g}) \tag{1}\\ & 3.95 \div 46=0.085870(\mathrm{~mol}) \\ & 9.6 \div 88=0.1091(\mathrm{~mol}) \\ & 0.1091>0.085870(\mathrm{~mol}) \end{align*}$ Allow statement that moles of ethanol < moles of butanoic acid Allow TE from M1 to M2 Ignore SF Allow (2) for $\mathrm{n}(\mathrm{ethanol})=0.085870$ and $\mathrm{n}($ butanoic acid $)=0.1091$ so butanoic acid in excess because the masses must have been determined Calculation dividing molar mass by density scores (0)	2

Question Number	Acceptable Answers	Additional Guidance	Mark
3(b)	An explanation that makes reference to the following points: - CO_{2} is produced which increases pressure / to prevent build up of pressure from the CO_{2} produced (inside funnel if tap not opened / stopper not removed) $\text { - } \begin{align*} & \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} / \\ & \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} / \\ & \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{H}^{+}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}^{+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{align*}$	Allow just 'pressure increases/to relieve pressure' provided CO_{2} given as a product in an equation even if the equation is incorrect Allow 'gas is produced which increases pressure' Do not allow if incorrect gas stated Do not award reference to explosion Ignore state symbols even if incorrect Accept other formulae except molecular Allow $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Use of RCOOH in equation	2

Question Number	Acceptable Answers	Additional Guidance	Mark
3(c)	An explanation that makes reference to the following points: Any two from three Either - aqueous layer will not flow (from the funnel when tap is open) - as stopper prevents air from entering top of funnel (to keep pressure constant) - due to creation of lower pressure / vacuum (inside) Or - some of the (aqueous) liquid flows out (of the funnel) - bubbles of air (enter through tap) / flow is stopped - (which) mixes/disturbs the two layers	Do not award for liquid flow due to 'normal' functioning of separating funnel	2

Question Number	Acceptable Answers	Additional Guidance	Mark
3(d)(i)	An answer that makes reference to the following point:		$\mathbf{1}$
	\bullet name or formula of a suitable drying agent	(anhydrous) sodium sulfate $/ \mathrm{Na}_{2} \mathrm{SO}_{4} /$ calcium chloride $/ \mathrm{CaCl}_{2}$ (anhydrous) calcium sulfate $/ \mathrm{CaSO} / \mathrm{magnesium} \mathrm{sulfate} / \mathrm{MgSO}_{4}$ Allow silica gel/silica crystals Ignore any other conditions except aqueous Do not award copper sulfate $/ \mathrm{CuSO} /$ cobalt chloride $/ \mathrm{CoCl}_{2}$ /silicone gel If name and formula given then both must be correct	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(d)(ii)	An explanation that makes reference to the following points: - (no more drying agent is needed) when liquid is no longer cloudy / drying agent stops clumping together	Allow when liquid clears/ goes transparent/ liquid goes translucent Allow drying agent remains as a powder Allow use cobalt chloride paper which turns pink (from blue) if water is still present Allow drying agent stops sticking to the glass Ignore drying agent is no longer crystalline Do not award reference to colour change Do not award reference to water/aqueous layer The use of CuSO_{4} has already been penalised in (i) so the mark can be awarded here if reference is made either to the presence of a blue colour due to copper(II) sulfate and requiring more drying agent or the absence of blue colour meaning that no more copper(II) sulfate is needed	1

Question Number	Acceptable Answers	Additional Guidance	Mark
3(d)(iii)	An answer that makes reference to the following point:	Allow redistillation Ignore 'fractional' Ignore 'simple' Do not award 'steam distillation'	$\mathbf{1}$
		distillation	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(e)(i)	An explanation that makes reference to the following points: - (peak between 2.2 and 2.4 ppm is due to) hydrogens attached to carbon attached to carbonyl carbon / $\begin{equation*} \mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{O} \tag{1} \end{equation*}$ - and is a triplet as adjacent carbon atom has 2 hydrogen atoms attached (so $\mathrm{n}+1=3$)	Allow protons attached to C adjacent to carbonyl C highlighted or labelled on drawing of structure Do not award if described as aldehyde or ketone or amide Allow is a triplet as group is attached to a CH_{2} group Allow 3-splits/3-splitting peak / 3 peaks for triplet Allow use of hydrogens and of protons interchangeably but penalise once only the use of the symbol H^{+} Penalise once only in either M1 or M2 if reference is made to mass spectrum fragments e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}^{+}$	2

Question Number	Acceptable Answers	Additional Guidance	Mark
3(e)(ii)	An answer that makes reference to the following points: the proton NMR spectrum of ethyl propanoate will - have 1 fewer peak (than the 5 of ethyl butanoate / have 4 peaks - there will be no sextet (at 1.7 ppm) - the triplet (at 2.2-2.4) will become a quartet	Allow proton environment for peaks Ignore just 'it has less peaks' Do not award carbon environments Allow hextet/6-splitting peak for sextet Allow peak due to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ not evident Ignore just no peak between 1.6 and 1.9 ppm Allow have (an extra) quartet instead of multiplet Allow spectrum has two not three triplets Allow spectrum has two not one quartet Allow spectrum has two triplets and two quartets Allow 3-splits/3-splitting peak(let) / 3 peaks for triplet Allow 4-splits etc for quartet Ignore reference to peak integrations/area ratios even if incorrect A list of the peaks of each compound scores (2) only unless there is a comparison such as the use of 'but'/ 'only'/ 'whereas' etc	3

Question Number	Acceptable Answers	Additional Guidance	Mark
4(a)	An answer that makes reference to the following point: - (volumetric / bulb / graduated) pipette (and pipette filler / safety filler)	Allow syringe Do not award dropping or teat pipette / burette / measuring cylinder / gas syringe	$\mathbf{1}$

| Question
 Number | Acceptable Answers | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- | :---: |
| 4(b)(i) | An explanation that makes reference to the following point: | (1) | Allow $\mathrm{V}_{\text {final }}-\mathrm{V}_{\mathrm{t}}$ is proportional to [reactant] |
| | - $\mathrm{V}_{\text {final }}-\mathrm{V}_{\mathrm{t}}$ is proportional to $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]$ | Allow a product is being monitored (rather
 than a reactant)
 Ignore just 'volume if proportional to
 concentration' | $\mathbf{1}$ |
| | | | |

Question Number	Acceptable Answers	Additional Guidance	Mark
4(b)(ii)	An answer that makes reference to the following points: - calculation of 1 half-life - calculation of second half-life which is constant / has a similar value (and so first order)	Example of calculation $\begin{aligned} & \mathrm{t}_{1}=0-0.70=0.70(\mathrm{~h}) \\ & \mathrm{t}_{2}=1.40-0.70=0.70(\mathrm{~h}) / \\ & \mathrm{t}_{3}=2.1-1.40=0.70(\mathrm{~h}) \end{aligned}$ Allow half lives in range $0.75-0.65$ (h) Allow correct conversion into minutes so range is 45-39 minutes/min Two correct half lives without any working and reference to constant value scores (1) Some correct working must be shown on the graph and even small dashes on the x axis is sufficient	2

Question Number	Acceptable Answers	Additional Guidance	Mark
4(b)(iii)	An explanation that makes reference to the following points: Either - no and either as order (determined) is with respect to ethyl butanoate only or water is a reactant - because water is in excess Or - yes, because water is in (very) large excess - so (concentration of water) has no effect on the rate of reaction	Allow reactants need to be equimolar to determine overall order / (additional experiment with ester in excess is needed) to find order with respect to water	2

Question Number	Acceptable Answers	Additional Guidance	Mark
4(b)(iv)	- tangent drawn at time $=2$ hours - changes in x and y determined - calculation of rate - correct units of $\mathrm{cm}^{3} \mathrm{~h}^{-1}$	Standalone mark but absence of results in loss of M2 and M3 unless data points used Example of calculation change in $y=(23-0)=23\left(\mathrm{~cm}^{3}\right)$ change in $x=(2.8-0)=2.8(\mathrm{~h})$ Allow range $22-24$ for $\mathrm{y}, 2.7-2.9$ for x $\begin{equation*} (-) 23 \div 2.8=(-) 8.21 \tag{1} \end{equation*}$ Allow range (-) $7.59-8.89$ which scores M2 and M3 Mark consequentially on values from M2 Allow $\mathrm{cm}^{3} / \mathrm{h}$ and allow (per) hr or hour(s) for h Ignore the absence of negative sign given in front of rate Ignore SF except 1 SF Allow correct conversion into other units e.g. (-) $0.1369 \mathrm{~cm}^{3} \mathrm{~min}^{-1} \mathrm{or} \mathrm{cm}^{3} / \mathrm{min}$ or (-) $2.282 \times 10^{-3} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ or $(-) 0.002282 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ Range of (-) $0.1265-0.1482 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ for M3 and M4 No TE on units from an incorrect calculation expression Do not award units m for min M4 is a standalone mark but only allow use of minutes if values used are converted from hours Use of data points at 2 h scores M3 and M4 only for $(-) 3.5 \mathrm{~cm}^{3} \mathrm{~h}^{-1}$ and or all other values only award M4 If no tangent then only award M4 unless use of data points as above	4

Question Number	Acceptable Answers	Additional Guidance	Mark
4(c)	An answer that makes reference to the following points: - this suggestion will quench the reaction / slow down the reaction (as reaction mixture at $100^{\circ} \mathrm{C}$) Either - it makes no difference (to validity) because the reaction is already very slow / takes 4 hours / no catalyst is used or it will make a difference/improve (validity) because otherwise the reaction will continue producing butanoic acid (at a significant rate)	Allow stop the reaction Ignore just reference to cooling Do not award if slowing of reaction is related to other reaction/ slow the titration reaction(s) Allow reference to validity improved because acid concentration is fixed/unchanged or because otherwise the reaction will continue so the titre will change Do not award reference to ice increasing the volume and decreasing the concentration	2

Total for Question 4 = 12 marks TOTAL FOR PAPER $=\mathbf{5 0}$ MARKS

