P
 Pearson Edexcel

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level in Chemistry (WCH15)
 Paper 01 Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P71888A
Publications Code WCH15_01_2301_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question number	Answer	Mark
$\mathbf{1}$	The only correct answer is $\mathbf{D}\left(\mathrm{Ni}(\mathrm{CO})_{4}\right)$	(1)
	\boldsymbol{A} is incorrect because copper has oxidation number +1 in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$and nickel has oxidation number 0 in $\mathrm{Ni}(\mathrm{CO})_{4}$ \boldsymbol{B} is incorrect because iron has oxidation number +3 in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ \boldsymbol{C} is incorrect because manganese has oxidation number +2 in MnSO${ }_{4}$	

Question number	Answer	Mark
2(a)	The only correct answer is D (6)	(1)
	$\boldsymbol{A} \quad$ is incorrect because this is the number of types of ligand	
$\boldsymbol{B} \quad$ is incorrect because this is the oxidation number of chromium		
$\boldsymbol{C} \quad$ is incorrect because this is the number of ligands		

Question number	Answer	Mark
2(b)	The only correct answer is B (+1)	(1)
	is incorrect because there is $a \mathrm{Cr}^{3+}$ ion, two Cl^{-}ligands and the $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ ligands are neutral D is incorrect because there is $a \mathrm{Cr}^{3+}$ ion, two Cl^{-}ligands and the $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ ligands are neutral	

Question number	Answer	Mark
$\mathbf{3}$	The only correct answer is $\mathbf{A}\left(\left[\mathrm{Al}_{(}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\right)$	(1)
	$\boldsymbol{B} \quad$ is incorrect because $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ gives a blue solution	
$\boldsymbol{C} \quad$ is incorrect because $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ gives an orange / brown solution		
$\boldsymbol{D} \quad$ is incorrect because $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ gives a green solution		

Question number	Answer	Mark
$\mathbf{4}$	The only correct answer is $\mathbf{D}\left(\mathrm{Zn}(\mathrm{OH})_{2}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because $\mathrm{Cu}(\mathrm{OH})_{2}$ is only soluble in excess aqueous ammonia \boldsymbol{B} is incorrect because $\mathrm{Fe}(\mathrm{OH})_{2}$ is insoluble in both excess aqueous ammonia and excess aqueous sodium hydroxide $\boldsymbol{C} \quad$ is incorrect because $\mathrm{Ni}(\mathrm{OH})_{2}$ is only soluble in excess aqueous ammonia	

Question number	Answer	Mark
$\mathbf{5}$	The only correct answer is C (24.4%)	(1)
	$\boldsymbol{A} \quad$ is incorrect because 6.10% is the value when only 1 mol of water is considered is incorrect because 8.06% the is the value wass of the salt	
	D is incorrect because 32.2% is the value when no water has been included in the molar mass of the salt	

Question number	Answer	Mark
6	The only correct answer is \mathbf{C} (diagram C with peak at $(0.001,8)$) \boldsymbol{A} is incorrect because the complex ion with EDTA ${ }^{4-}$ has a more intense colour intensity than that with CN^{-}ions \boldsymbol{B} is incorrect because EDTA ${ }^{4-}$ is a hexadentate ligand so the mol ratio $\mathrm{Cr}^{3+} ; E D T A^{4-}$ is $1: 1$ and the colour intensity should be higher D is incorrect because EDTA ${ }^{4-}$ is a hexadentate ligand so the mol ratio Cr^{3+}. EDTA^{4-} is $1: 1$	(1)

Question number	Answer	Mark
$\mathbf{7}$	The only correct answer is D (activation energy is high)	(1)
	$\boldsymbol{A} \quad$ is incorrect because a positive value for $E_{\text {cell }}^{\theta}$ indicates the reaction is thermodynamically feasible	
$\boldsymbol{B} \quad$ is incorrect because a positive value for $\Delta_{r} H$ would not be affected by a catalyst		
$\boldsymbol{C} \quad$ is incorrect because a positive value for $\Delta S_{\text {total }}$ indicates the reaction is thermodynamically feasible		

Question number	Answer	Mark
$\mathbf{8}$	The only correct answer is $\mathbf{B}\left(\mathrm{Fe}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-}\right.$and $\left.\mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Br}^{-}(\mathrm{aq})\right)$	$\mathbf{(1)}$
	$\boldsymbol{A} \quad$ is incorrect because both half-equations cannot be oxidation $\boldsymbol{C} \quad$ is incorrect because these half-equations would give E^{\ominus} cell $=-0.32 \mathrm{~V}$ $\boldsymbol{D} \quad$ is incorrect because both half-equations cannot be reduction	

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is C $\left(525\left(\mathrm{~cm}^{3}\right)\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because $225 \mathrm{~cm}^{3}$ is the volume of oxygen needed to react with only $50 \mathrm{~cm}^{3}$ propene $\boldsymbol{B} \quad$ is incorrect because $300 \mathrm{~cm}^{3}$ is the volume of oxygen needed to react with only $50 \mathrm{~cm}^{3}$ but-1-ene incorrect because $700 \mathrm{~cm}^{3}$ is the volume of oxygen needed to react with the whole mixture if the equations are balanced incorrectly by assuming that 1 mol of O_{2} is needed to form 1 mol of $\mathrm{H}_{2} \mathrm{O}$	

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0}$ | The only correct answer is C $\left(0.1\left(\mathrm{~cm}^{3}\right)\right)$ | (1) |
| | $\boldsymbol{A} \quad$ is incorrect because the volume of carbon dioxide is $250 \times 405 / 1 \times 10^{6}=0.101 \mathrm{~cm}^{3}$, which is approximately $0.1 \mathrm{~cm}^{3}$
 \boldsymbol{B} is incorrect because the volume of carbon dioxide is $250 \times 405 / 1 \times 10^{6}=0.101 \mathrm{~cm}^{3}$, which is approximately $0.1 \mathrm{~cm}^{3}$
 \boldsymbol{D} is incorrect because the volume of carbon dioxide is $250 \times 405 / 1 \times 10^{6}=0.101 \mathrm{~cm}^{3}$, which is approximately $0.1 \mathrm{~cm}^{3}$ | |

Question number	Answer	Mark
$\mathbf{1 1 (a)}$	The only correct answer is B $\left(3095-3010 \mathrm{~cm}^{-1}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because $3500-3300 \mathrm{~cm}^{-1}$ shows the presence of N - H in an amine which is present in valine	
	$\boldsymbol{C} \quad$ is incorrect because $2962-2853 \mathrm{~cm}^{-1}$ shows the presence of C - H in an alkane which is present in valine	
$\boldsymbol{D} \quad$ is incorrect because $1725-1720 \mathrm{~cm}^{-1}$ shows the presence of $C=O$ in an carboxylic acid which is present in valine		

Question number	Answer	Mark
11(b)	The only correct answer is A (doublet and octet) B is incorrect because the peak corresponding to the H attached to C with $2 \mathrm{CH}_{3}$ groups and CH will be an octet as there are 7 protons on the neighbouring carbons C is incorrect because the peak corresponding to the $2 \mathrm{CH}_{3}$ groups will be a doublet as there is 1 proton on the neighbouring carbon D is incorrect because the peak corresponding to the $2 \mathrm{CH}_{3}$ groups will be a doublet as there is 1 proton on the neighbouring carbon and the H attached to C with $2 \mathrm{CH}_{3}$ groups and CH will be an octet as there are 7 protons on the neighbouring carbons	(1)

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{1 2 (a)} & \text { The only correct answer is D (nucleophilic addition) } & \text { (1) } \\ & \boldsymbol{A} \quad \text { is incorrect because electrophiles attack electron rich regions but the carbon atom attached to the magnesium is } \delta- \\ \boldsymbol{B} \quad \text { is incorrect because the Grignard reagent is not a source of free radicals } \\ \boldsymbol{C} \quad \text { is incorrect because increasing the length of the carbon chain is not oxidation }\end{array}\right)$

Question number	Answer	Mark
$\mathbf{1 2 (b)}$	The only correct answer is B $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{MgBr}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because this would form 1-phenylpentan-1-ol	
$\boldsymbol{C} \quad$ is incorrect because this would form 1-phenyl-3-methylbutan-1-ol		
$\boldsymbol{D} \quad$ is incorrect because this would form 1-phenyl-2,2-dimethylpropan-1-ol		

Question number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is C (0.6)	(1)
	$\boldsymbol{A} \quad$ is incorrect because the amino acid in the lower spot will have an R_{f} value of about 0.2 $\boldsymbol{B} \quad$ is incorrect because the distance moved by X is measured from the solvent front instead of from the baseline $\boldsymbol{D} \quad$ is incorrect because the amino acid in the higher spot will have an R_{f} value of about 0.8	

Question number	Answer	Mark	
$\mathbf{1 4}$	The only correct answer is \mathbf{D} (
	B is incorrect because amines do not react with carboxylic acids $\mathbf{B} \quad$ is incorrect because amides do react to form polyamides $\mathbf{C} \quad$ is incorrect because this pair of monomers will not produce the required polyamide	(1)	

Question number	Answer	Mark
$\mathbf{1 5 (a)}$	The only correct answer is $\mathbf{A}\left(\mathrm{NaNO}_{2}\right.$ and HCl at $\left.5^{\circ} \mathrm{C}\right)$	(1)
	B \quad is incorrect because NaNO_{3} does not react with HCl to form the nitrous acid needed for the formation of benzenediazonium ions is incorrect because nitrous acid and benzenediazonium ions decompose at $50^{\circ} \mathrm{C}$ D is incorrect because NaNO_{3} does not react with HCl to form the nitrous acid needed for the formation of benzenediazonium ions and nitrous acid and benzenediazonium ions decompose at $50^{\circ} \mathrm{C}$	

Question number	Answer	Mark
$\mathbf{1 5 (b)}$	The only correct answer is B ((1)
	A is incorrect because alkaline conditions are needed to form an azo dye $\boldsymbol{C} \quad$ is incorrect because the OH group is in the wrong position and alkaline conditions are needed to form an azo dye D is incorrect because the OH group is in the wrong position	

Question number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is A ((1)
	$\boldsymbol{C} \quad$ is incorrect because the OH group will not be protonated in preference to the NH_{2} group $\boldsymbol{D} \quad$ is incorrect because the addition of an acid will cause protonation not loss of a proton	

Question Number	Answer	Additional Guidance	Mark
17(a)	- calculation of mol C/ CO_{2} - calculation of mol H - calculation of mol of O - formula Comment - alternative method via moles of A - M1 calculate moles of A : 5.26 $\div 136$ $=0.0387(\mathrm{~mol})$ - M2 calculate moles of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ - M3 use combustion equation to show A forms $9 \mathrm{CO}_{2}$ and $6 \mathrm{H}_{2} \mathrm{O}$, so $\mathrm{C}=9$ and $\mathrm{H}=12$ - M4 use of Mr to show mass due to $\mathrm{O}=$ 16 , so number of O atoms $=1$ If candidate does not score 4 marks, mark using method that gives best score	Example of calculation: $\mathrm{mol} \mathrm{CO}_{2}=15.3 / 44=0.34773=\mathrm{mol} \mathrm{C}$ or mass $\mathrm{C}=15.3 \times 12 / 44=4.1727(\mathrm{~g})$ and $\mathrm{mol} \mathrm{C}=4.1727 / 12=0.34773$ $\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=4.18 / 18=0.23222$ and $\mathrm{mol} \mathrm{H}=2 \times 0.23222=0.46444$ or mass $\mathrm{H}=4.18 \times 2 / 18=0.46444(\mathrm{~g})$ and $\mathrm{mol} \mathrm{H}=0.46444$ mass $\mathrm{O}=5.26-4.1727-0.46444=0.62286(\mathrm{~g})$ and $\mathrm{mol} \mathrm{O}=0.62286 / 16=0.038929$ or moles of $\mathrm{O}=5.26 / 136=0.03876(\mathrm{~mol})$ TE on mass C and H $\begin{array}{cccc}\text { ratio mol } & \frac{0.34773}{} \mathrm{C}: & \underline{0.46444} \mathrm{H}: & \underline{0.038929} \mathrm{O} \\ 0 & 12 & 1\end{array}$ So formula is $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$ (and this is the same as the molecular formula as $\left.M_{\mathrm{r}}=(9 \times 12)+(12 \times 1)+16=136\right)$ No TE on incorrect mol Ignore SF except 1 SF at each stage Comment : Ignore minor rounding errors e.g. 4.172 is acceptable for mass of C Allow masses of C, H and O to be determined and expressed as percentages e.g. $\mathrm{C}=79.4 \%, \mathrm{H}=8.8 \%$, so $\mathrm{O}=11.8 \%$ Allow alternative methods	(4)

Question Number	Answer	Additional Guidance	Mark
17(c)	An explanation that makes reference to the following points: - structure of \mathbf{F} - carbon atoms labelled	Example of structure: Allow displayed / structural formulae or any combination of these / skeletal formulae Allow alternative clear ways of identifying carbon atoms Allow M2 dependent on M1, unless very near miss (e.g. accidental omitting H on OH group)	(2)

Question Number	Answer	Additional Guidance	Mark
17(d)	An answer that makes reference to the following points: - structure of G (1) - m / z corresponds to $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}^{+} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOH}^{+} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2}^{+}$/ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}^{+} /$loss of $\mathrm{C}_{2} \mathrm{H}_{5}$ (1)	Example of structure	(2)
		OR	
		OR	
		Allow any combination of structural and displayed formula / skeletal formula - if 2 structures are shown both must be incorrect	
		Ignore missing + M1 and M2 are standalone marks	
		No TE from incorrect structure	

Question Number	Answer	Additional Guidance	Mark
18(a)	• $+5 / 5+$	Allow $\mathrm{V} / 5 / \mathrm{V}^{5+}$	(1)

Question Number	Answer	Additional Guidance	Mark
18(b)	An explanation that makes reference to the following points:	(3)	
	$\bullet \mathrm{V}^{5+} /$ the vanadium ion is (very) small / highly charged (1)	Allow high charge density	
	- so it would polarise (two) water molecules / OH bonds (1)	Allow 'so it weakens OH bonds' Allow 'distorts electron clouds in water'	
- causing them to lose hydrogen ions / H^{+}ions / deprotonate (1)		Allow the energy required to remove 5 electrons to form V^{5+} is too high (1) because the energy is not recovered by the hydration of the ion (1) If no marks given allow 1 mark for correct electronic configuration of V^{5+} e.g. [Ar]	

Question Number	Answer	Additional Guidance	Mark
18(d)(ii)	- correct species on each side of equation - balancing (1) Comment - M2 dependent on M1	Example of equation: $\begin{equation*} 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{~V}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+} \tag{1} \end{equation*}$ Or $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{~V}^{3+}+22 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mn}^{2+}+5\left[\mathrm{VO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}+4 \mathrm{H}^{+}$ Allow multiples Allow (1) for $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{~V}^{3+}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~V}^{5+}+8 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols even if incorrect Allow oxidation to $\mathrm{V}(\mathrm{IV})$ if ratio $1: 5$ in (d)(i) $\mathrm{MnO}_{4}^{-}+5 \mathrm{~V}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{VO}^{2+}+2 \mathrm{H}^{+}$ species (1) balancing (1)	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
18(e)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

	Number of marks awarded for structure of answer and sustained line of reasoning
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2
Answer is partially structured with some linkages and lines of reasoning.	1
Answer has no linkages between points and is unstructured.	0

Comment:

Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning

In general, it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for reasoning.

General points to note

If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning $\operatorname{mark}(\mathrm{s})$ awarded do not deduct mark(s).

Indicative content

- IP1 - vanadium(V) to vanadium(IV)

Both iron and tin will reduce / convert / change V(V) to V(IV) and
E^{\ominus} cell for $\mathrm{Fe}=(+) 1.44 \mathrm{~V}$
and
E^{\ominus} cell for $\mathrm{Sn}=(+) 1.14 \mathrm{~V}$

- IP2 - equations
$2 \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+\mathrm{Fe} \rightarrow 2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Fe}^{2+}$
and
$2 \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+\mathrm{Sn} \rightarrow 2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Sn}^{2+}$
- IP3 - vanadium(IV) to vanadium(III)

Both iron and tin will reduce / convert / change V(IV) to V (III) and
$E_{\text {cell }}^{\ominus}$ for $\mathrm{Fe}=(+) 0.78 \mathrm{~V}$
and
E^{\ominus} cell for $\mathrm{Sn}=(+) 0.48 \mathrm{~V}$

- IP4-equations
$2 \mathrm{VO}^{2+}+4 \mathrm{H}^{+}+\mathrm{Fe} \rightarrow 2 \mathrm{~V}^{3+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Fe}^{2+}$
and
$2 \mathrm{VO}^{2+}+4 \mathrm{H}^{+}+\mathrm{Sn} \rightarrow 2 \mathrm{~V}^{3+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Sn}^{2+}$
- IP5 - vanadium(III) to vanadium(II)
iron will reduce / convert / change $\mathrm{V}(\mathrm{III})$ to V (II) and $E^{\ominus}{ }_{\text {cell }}=$ (+)0.18 V
and
tin will not reduce / convert / change V (III) to $\mathrm{V}(\mathrm{II})$ and as $E_{\text {cell }}^{\ominus}=-0.12 \mathrm{~V}$
- IP6 - equation
$2 \mathrm{~V}^{3+}+\mathrm{Fe} \rightarrow 2 \mathrm{~V}^{2+}+\mathrm{Fe}^{2+}$

Ignore state symbols in all equations even if incorrect

If IP1 and IP2 not awarded, allow 1 IP for either totally correct iron or totally correct tin

If IP3 and IP4 not awarded, allow 1 IP for either totally correct iron or totally correct tin

Comment penalise references to Fe or Sn as oxidising agents once only in IP1, IP3 and IP5

Ignore any references to colour of vanadium species

If no other marks awarded, allow 1 IP for idea that Fe can reduce to V^{2+} but Sn (only) to V^{3+}

If no other marks awarded allow 1 IP for three pairs of correct E^{\ominus} cell values

Question Number	Answer	Additional Guidance	Mark
19(a)(i)	- curly arrow from on or within the circle to anywhere towards or on $\mathrm{NO}_{2}{ }^{+}$ - intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon atom and some part of the positive charge must be within the horseshoe - curly arrow from $\mathbf{C}-\mathbf{H}$ bond to anywhere in the hexagon, and final organic product shown	Allow arrow that starts from anywhere within the hexagon Do not award curly arrow starting on or outside the hexagon Do not award missing + on electrophile Do not award missing OH in M1 only Do not award dotted bonds to H and NO_{2} unless they are part of a 3D structure Do not award formation of 4-nitrophenol / 3-nitrophenol in M2 only Comment - some part of the 'horseshoe' opening must be opposite the tetrahedral carbon, so only penalise if the line of the circle extends level with or past the tetrahedral C Ignore missing H^{+} Ignore additional equations to generate $\mathrm{NO}_{2}{ }^{+}$and reform catalysts	(3)
Examples of mechanism:			

Question Number	Answer	Additional Guidance	Mark
19(a)(ii)	An explanation that makes reference to the following points: Phenol is more reactive than benzene / requires milder conditions because: - the lone pair (of electrons) on oxygen overlaps with the pi cloud / delocalised electrons / ring - so increases the electron density of the (benzene) ring	Allow reverse argument for why benzene is less reactive / requires harsher conditions Allow lone pair on OH group Ignore just lone pair Allow spreads into the pi cloud / delocalised electrons / ring (of electrons) Allow interacts with the pi cloud / delocalised electrons / ring (of electrons) Allow donated to the pi cloud / delocalised electrons / ring (of electrons) Allow the (benzene) ring is more susceptible to electrophilic attack Allow makes the (benzene) ring more nucleophilic Do not award 'makes the ring more electronegative'	(2)

Question Number	Answer	Additional Guidance	Mark
19(b)	An answer that makes reference to the following points: - Reagent for step 1: potassium cyanide and (aqueous) ethanol - First intermediate: 2-phenylethanenitrile - Reagent for step 2: lithium tetrahydridoaluminate(III) / LiAlH_{4} in (dry) ether (followed by (hydrolysis with) dilute acid / H^{+}) - Second intermediate: 2-phenylethylamine - Reagent for step 3: ethanoyl chloride / $\mathrm{CH}_{3} \mathrm{COCl} /$ ethanoic anhydride / $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	Allow displayed / structural formulae or any combination of these / skeletal formulae for intermediates Ignore any references to heat / reflux throughout Ignore HCN Allow NaCN Stand alone mark Allow -CN (i.e.triple bond not displayed) Do not award H_{2} and $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$ Stand alone mark Allow TE from M2, if extra C shown in nitrile Do not award ethanoic acid / $\mathrm{CH}_{3} \mathrm{COOH}$ Ignore AlCl_{3}	(5)

Comment - allow (3) for use of Grignard reagent;
M1 -formation of Grignard, then reaction with HCHO to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, then reaction with $\mathrm{KBr} / \mathrm{H}_{2} \mathrm{SO}_{4}$ to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$, then reaction with NH_{3}

M2 structure of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
M3 reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ with $\mathrm{CH}_{3} \mathrm{COCl}$

Question Number	Answer	Additional Guidance	Mark
19(c)(i)	- structure of zwitterion	Example of zwitterion: Allow '+' anywhere on NH_{3} group Allow carboxylate ion shown with charge delocalised across two oxygen atoms Allow displayed / structural / skeletal formulae or any combination of these Ignore bond lengths and bond angles	(1)

Question Number	Answer	Additional Guidance	Mark	
19(c)(ii)	structure of dipeptide		(1) Allow displayed / structural / skeletal formulae or any combination of these Allow $\mathrm{C}_{6} \mathrm{H}_{5}$ for the phenyl groups Ignore bond lengths and bond angles Ignore connectivity of OH unless displayed as C-H-O (i.e. a bond shown from C to H then to O)	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 9 (c) (i i i) ~}$	• $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$	Allow symbols in any order e.g. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}_{2}$	(1)

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 9 (c) (i v) ~}$ | \bullet two chiral carbon atoms circled | Example of circled chiral carbons: |
| Allow other ways of representing the two | | |
| carbon atoms e.g. asterisk * | | |
| If more than two carbons are circled then do | | |
| not award | | |

Section C

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)	An explanation that makes reference to the following points: - there is stability associated with a half-full set of (3)d orbitals (1) - Mn^{2+} has five d electrons so is more stable than Mn^{3+} (and has a higher E^{\ominus} value) - Fe^{2+} has six d electrons so is less stable than Fe^{3+} (and has a lower E^{\ominus} value) If M2 and M3 not awarded then allow 1 rescue mark for two correct electronic configuration from $\begin{aligned} & \mathrm{Mn}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{4} \\ & \mathrm{Fe}^{2+}=[\mathrm{Ar}] 3 \mathrm{~d}^{6} \\ & \mathrm{Fe}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{5} \end{aligned}$ If more than two electronic configurations are given and one is incorrect then do not award the rescue mark	Allow reverse argument Allow 3d subshell with 5 electrons as alternative for half-filled Allow Mn^{2+} has five d electrons so eqm moves to RHS / Mn^{2+} has five d electrons so is energetically more favourable / more energy needed to remove an electron from Mn^{2+} as it has five d electrons Allow Fe^{3+} is more stable as it has a half-filled subshell so Fe^{2+} tends to lose electrons, (making E^{\bullet} less positive) Allow Fe^{2+} has a pair of electrons (in a d orbital) that repel so is less stable than Fe^{3+} (and has a lower E^{\ominus} value)	(3)

Question Number	Answer	Additional Guidance	Mark
20(b)(i)	An explanation that makes reference to the following points: - Mn reduced from $(+) 4$ to $(+) 2$ - Cl oxidised from -1 to 0 and in Cl_{2}	Allow oxidation numbers shown under equation Allow Mn^{4+} and Mn^{2+} Allow Cl^{-} Comments: 0 must be linked to Cl_{2} If no other mark is awarded, allow (1) for all oxidation numbers of Mn and Cl correct	(2)

Question Number	Answer		Additional Guidance	Mark
20(b)(ii)	- calculation of $\mathrm{mol} \mathrm{O}_{2}$ - calculation of concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$	(1) (1)	Example of calculation: Mol of $\mathrm{O}_{2}=\frac{86.0}{24000}=0.0035833 / 3.5833 \times 10^{-3}(\mathrm{~mol})$ $\mathrm{Mol} \mathrm{H}_{2} \mathrm{O}_{2}=2 \times 0.0035833$ $=0.0071667 / 7.1667 \times 10^{-3}(\mathrm{~mol})$ and Conc $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{0.0071667 \times 1000}{100}$ $=0.071667 / 7.1667 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ TE on mol O_{2} Ignore SF except 1 SF Comment - if M1 is rounded to 0.00358 and carried through into M1 and M2, this gives a final answer of 0.0716	(2)

Question Number	Answer	Additional Guidance	Mark
20(c)	- correct balanced equation	Example of equation: $3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}-+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Allow multiples Allow reversible arrows provided reactants as shown are still on LHS Allow uncancelled electrons on either side Ignore state symbols even if incorrect Ignore oxidation states above atoms, even if incorrect	(1)

Question Number	Answer	Additional Guidance	Mark
20(d)	An explanation that makes reference to the following points: - this reaction is (auto)catalysed by the Mn^{2+} ions formed - (the reaction in) experiment 1 starts slowly because there is no Mn^{2+} / catalyst present initially (but speeds up as Mn^{2+} ions are formed) - (the reaction in) experiment 2 is fast(est) at the start as Mn^{2+} ions / catalyst (already) present	Mn^{2+} can be mentioned at any point Allow experiment 1 starts slowly but speeds up as Mn^{2+} / catalyst forms Allow rate decreases constantly as Mn^{2+} ions / catalyst (already) present	(3)

Question Number	Answer	Additional Guidance	Mark
20(e)(i)	- calculation of mol of KMnO_{4} - calculation of mol of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ - KMnO_{4} is in excess because there are more than twice as many mol of KMnO_{4} than mol of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	Example of calculation: $\mathrm{Mol} \mathrm{KMnO} 44=\frac{7.00}{158}=0.044304(\mathrm{~mol})$ $\mathrm{Mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}=\frac{1.73}{92}=0.018804(\mathrm{~mol})$ Accept $0.044304 \mathrm{~mol}_{\mathrm{KMnO}}^{4}$ would react with $0.022152 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ or reverse argument TE on M1 and M2 Allow other methods e.g. $\mathrm{Mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}=\frac{1.73}{92}=0.018804(\mathrm{~mol})(1)$ Minimum mass of KMnO_{4} needed $=2 \times 0.018804 \times 158$ $=5.9421(\mathrm{~g})(1)$ This is less than 7 g so KMnO_{4} is in excess (1) Ignore SF except 1 SF in M1 and M2	(3)

Question Number	Answer	Additional Guidance	Mark
20(e)(ii)	- add H^{+}ions / acidify the solution / mixture	Allow correct name or formula of any strong acid e.g. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$ Do not award carboxylic acids e.g. $\mathrm{CH}_{3} \mathrm{COOH}$ Allow $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}-+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ Ignore references to concentration $/$ heat $/$ reflux	(1)
		Do not award 'acid hydrolysis' $/$ acid catalyst $/ \mathrm{H}^{+}$ions from water $/$inclusion of a second incorrect reagent e.g. H^{+}and $\mathrm{LiAlH} \mathrm{H}_{4}$	

Question Number	Answer		Additional Guidance	Mark
20(f)(i)	- anode half-equation - cathode half-equation	(1) (1)	Examples of equations: $\mathrm{Zn}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ZnO}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$ $2 \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}$ Allow multiples / reversible arrows Ignore state symbols even if incorrect If no other mark is awarded allow (1) for anode and cathode half-equations written in wrong places If no other mark awarded allow 1 mark for Zn on the left-hand side of the anode reaction and MnO_{2} on the left-hand side of the cathode reaction	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 0 (f) (i i)}$	$\bullet\left(E^{\ominus}=+\right) 0.15(\mathrm{~V})$	Do not award $-0.15(\mathrm{~V})$	(1)

