

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level in Chemistry (WCH15) Paper 01 Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P71888A Publications Code WCH15_01_2301_MS All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: • write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question	Answer	Mark
number		
1	The only correct answer is D (Ni(CO) ₄)	(1)
	<i>A</i> is incorrect because copper has oxidation number $+1$ in $[Cu(NH_3)_2]^+$ and nickel has oxidation number 0 in $Ni(CO)_4$	
	B is incorrect because iron has oxidation number $+3$ in $[Fe(CN)_6]^{3-1}$	
	<i>C</i> is incorrect because manganese has oxidation number $+ 2$ in MnSO ₄	

Question	An	swer	Mark
number			
2(a)	Th	e only correct answer is D (6)	(1)
	A	is incorrect because this is the number of types of ligand	
	B	is incorrect because this is the oxidation number of chromium	
	С	is incorrect because this is the number of ligands	

Question	Answer	Mark
number		
2(b)	The only correct answer is B (+1)	(1)
	<i>A</i> is incorrect because there is a Cr^{3+} ion, two Cl^{-} ligands and the $NH_2CH_2CH_2NH_2$ ligands are neutral	
	<i>C</i> is incorrect because there is a Cr^{3+} ion, two Cl^{-} ligands and the $NH_2CH_2CH_2NH_2$ ligands are neutral	
	D is incorrect because there is a Cr^{3+} ion, two Cl^{-} ligands and the $NH_2CH_2CH_2NH_2$ ligands are neutral	

Question	Answer	Mark
number		
3	The only correct answer is A ([Al(H ₂ O) ₆] ³⁺)	(1)
	B is incorrect because $[Cu(H_2O)_6]^{2+}$ gives a blue solution	
	<i>C</i> is incorrect because $[Fe(H_2O)_6]^{3+}$ gives an orange / brown solution	
	D is incorrect because $[Ni(H_2O)_6]^{2+}$ gives a green solution	

Question	An	swer	Mark
number			
4	Th	e only correct answer is D (Zn(OH) ₂)	(1)
	A	is incorrect because Cu(OH)2 is only soluble in excess aqueous ammonia	
	B	is incorrect because $Fe(OH)_2$ is insoluble in both excess aqueous ammonia and excess aqueous sodium hydroxide	
	C	is incorrect because $Ni(OH)_2$ is only soluble in excess aqueous ammonia	

Question number	Answer	Mark
5	The only correct answer is C (24.4%)	(1)
	<i>A</i> is incorrect because 6.10% is the value when only 1 mol of water is considered	
	<i>B</i> is incorrect because 8.06 % is the value when only 1 mol of water is considered and no water has been included in the molar mass of the salt	
	D is incorrect because 32.2 % is the value when no water has been included in the molar mass of the salt	

Question	Ar	iswer	Mark
number			
6	Th	e only correct answer is C (diagram C with peak at (0.001, 8))	(1)
	A	is incorrect because the complex ion with $EDTA^{4-}$ has a more intense colour intensity than that with CN^- ions	
	B	is incorrect because $EDTA^{4-}$ is a hexadentate ligand so the mol ratio Cr^{3+} ; $EDTA^{4-}$ is 1 : 1 and the colour intensity should be higher	
	D	is incorrect because $EDTA^{4-}$ is a hexadentate ligand so the mol ratio Cr^{3+} ; $EDTA^{4-}$ is 1 : 1	

Question	An	swer	Mark
number			
7	Th	e only correct answer is D (activation energy is high)	(1)
	A	is incorrect because a positive value for E^{Θ}_{cell} indicates the reaction is thermodynamically feasible	
	B	is incorrect because a positive value for $\Delta_r H$ would not be affected by a catalyst	
	C	is incorrect because a positive value for ΔS_{total} indicates the reaction is thermodynamically feasible	

Question	Answer	Mark
number		
8	The only correct answer is B (Fe ²⁺ (aq) \Rightarrow Fe ³⁺ (aq) + e ⁻ and Br ₂ (aq) + 2e ⁻ \Rightarrow 2Br ⁻ (aq))	(1)
	<i>A</i> is incorrect because both half-equations cannot be oxidation	
	<i>C</i> is incorrect because these half-equations would give $E^{\bullet}_{cell} = -0.32 V$	
	D is incorrect because both half-equations cannot be reduction	

Question	Answer	Mark	
number			
9	The only correct answer is C (525 (cm ³))	(1)	
	<i>A</i> is incorrect because 225 cm ³ is the volume of oxygen needed to react with only 50 cm ³ propene \mathbf{R} is incorrect because 200 m ³ is the volume of oxygen needed to react with only 50 cm ³ propene		
	B is incorrect because 300 cm ³ is the volume of oxygen needed to react with only 50 cm ³ but-1-ene		
	D is incorrect because 700 cm ² is the volume of oxygen needed to react with the whole mixture if the equations are balanced incorrectly by assuming that 1 mol of O_2 is needed to form 1 mol of H_2O		

Question	An	swer	Mark
number			
10	Th	e only correct answer is C (0.1 (cm ³))	(1)
	A	is incorrect because the volume of carbon dioxide is $250 \times 405/1 \times 10^6 = 0.101 \text{ cm}^3$, which is approximately 0.1 cm ³	
	B	is incorrect because the volume of carbon dioxide is $250 \times 405/1 \times 10^6 = 0.101 \text{ cm}^3$, which is approximately 0.1 cm^3	
	D	is incorrect because the volume of carbon dioxide is $250 \times 405/1 \times 10^6 = 0.101 \text{ cm}^3$, which is approximately 0.1 cm ³	

Question	Answer	Mark
number		
11(a)	The only correct answer is B $(3095 - 3010 \text{ cm}^{-1})$	(1)
	A is incorrect because $3500 - 3300$ cm ⁻¹ shows the presence of N-H in an amine which is present in value	
	<i>C</i> is incorrect because $2962 - 2853$ cm ⁻¹ shows the presence of C-H in an alkane which is present in value	
	D is incorrect because $1725 - 1720$ cm ⁻¹ shows the presence of C=O in an carboxylic acid which is present in valine	

Question	An	swer	Mark
11(b)	The	e only correct answer is A (doublet and octet)	(1)
	B	is incorrect because the peak corresponding to the H attached to C with 2 CH ₃ groups and CH will be an octet as there are 7 protons on the neighbouring carbons	
	C	is incorrect because the peak corresponding to the 2 CH_3 groups will be a doublet as there is 1 proton on the neighbouring carbon	
	D	is incorrect because the peak corresponding to the 2 CH ₃ groups will be a doublet as there is 1 proton on the neighbouring carbon and the H attached to C with 2 CH ₃ groups and CH will be an octet as there are 7 protons on the neighbouring carbons	

Question number	An	swer	Mark
12(a)	Th	e only correct answer is D (nucleophilic addition)	(1)
	A	is incorrect because electrophiles attack electron rich regions but the carbon atom attached to the magnesium is $\delta-$	
	B	is incorrect because the Grignard reagent is not a source of free radicals	
	C	is incorrect because increasing the length of the carbon chain is not oxidation	

Question	Answer	Mark
number		
12(b)	The only correct answer is B (CH ₃ CH ₂ CH(CH ₃)MgBr)	(1)
	<i>A</i> is incorrect because this would form 1-phenylpentan-1-ol	
	<i>C</i> is incorrect because this would form 1-phenyl-3-methylbutan-1-ol	
	D is incorrect because this would form 1-phenyl-2,2-dimethylpropan-1-ol	

Question	Answer	Mark
number		
13	The only correct answer is C (0.6)	(1)
	A is incorrect because the amino acid in the lower spot will have an $R_{\rm f}$ value of about 0.2	
	B is incorrect because the distance moved by X is measured from the solvent front instead of from the baseline	
	D is incorrect because the amino acid in the higher spot will have an R_f value of about 0.8	

Question number	Answer	Mark
14	The only correct answer is D ($\overset{\circ}{\underset{CI \longrightarrow C}{\sqcup}}$ $\overset{\circ}{\underset{CI \longrightarrow C}{\sqcup}}$ and $\overset{\circ}{\underset{H_2N \longrightarrow H_2}{\sqcup}}$)	
	A is incorrect because amines do not react with carboxylic acids	
	B is incorrect because amides do react to form polyamides	
	C is incorrect because this pair of monomers will not produce the required polyamide	

Question number	Answer	Mark
15(a)	The only correct answer is A (NaNO ₂ and HCl at 5 °C)	(1)
	B is incorrect because NaNO ₃ does not react with HCl to form the nitrous acid needed for the formation of benzenediazonium ions	
	C is incorrect because nitrous acid and benzenediazonium ions decompose at 50°C	
	D is incorrect because NaNO ₃ does not react with HCl to form the nitrous acid needed for the formation of benzenediazonium ions and nitrous acid and benzenediazonium ions decompose at 50° C	

Question number	Answer	Mark
15(b)	The only correct answer is B (in alkaline solution)	(1)
	<i>A</i> is incorrect because alkaline conditions are needed to form an azo dye	
	<i>C</i> is incorrect because the OH group is in the wrong position and alkaline conditions are needed to form an azo dye	
	<i>D</i> is incorrect because the OH group is in the wrong position	

Question	Answer		Mark
number			
16	The only correct answer is A ($_{HO}$ $_{HO}$ $_{NH_3^+}$)		(1)
	B is incorrect because the OH group will not be protonated in preference to the NH_2 group		
	<i>C</i> is incorrect because the addition of an acid will cause protonation not loss of a proton		
	D is incorrect because the addition of an acid will cause protonation not loss of protons		
		(Total for Costion A - 20	(manular)

(Total for Section A = 20 marks)

Section B			
Question Number	Answer	Additional Guidance	Mark
17(a)		Example of calculation:	(4)
	• calculation of mol C / CO_2 (1)	mol $CO_2 = 15.3/44 = 0.34773 = mol C$ or	
	mass C = $15.3 \times 12/44 = 4.172$	mass C = $15.3 \times 12/44 = 4.1727$ (g) and mol C = $4.1727/12 = 0.34773$	
	• calculation of mol H (1)	mol H ₂ O = $4.18/18 = 0.23222$ and mol H = $2 \ge 0.23222 = 0.46444$	
		mass H = $4.18 \text{ x } 2/18 = 0.46444 \text{ (g)}$ and mol H = 0.46444	
	• calculation of mol of O (1)	mass $O = 5.26 - 4.1727 - 0.46444 = 0.62286$ (g) and mol $O = 0.62286/16 = 0.038929$	
		or moles of $O = 5.26/136 = 0.03876$ (mol) TE on mass C and H	
	• formula (1)		
	Comment – alternative method via moles of A	ratio mol $0.34773 \text{ C} : 0.46444 \text{ H} : 0.038929 \text{ O} \\ 0.038929 0.038$	
	 M1 calculate moles of A : 5.26÷136 =0.0387 (mol) M2 calculate moles of CO₂ and H₂O 	So formula is C ₉ H ₁₂ O (and this is the same as the molecular formula as $M_r = (9 \times 12) + (12 \times 1) + 16 = 136)$ No TE on incorrect mol	
	• M3 use combustion equation to show A forms 9CO ₂ and 6H ₂ O, so C=9 and H-12	Ignore SF except 1 SF at each stage	
	 M4 use of Mr to show mass due to O = 16, so number of O atoms = 1 	Comment : Ignore minor rounding errors e.g. 4.172 is acceptable for mass of C Allow masses of C, H and O to be determined and expressed as	
	If candidate does not score 4 marks, mark using method that gives best score	percentages e.g. $C = 79.4\%$, $H = 8.8\%$, so $O = 11.8\%$ Allow alternative methods	

Question Number	Answer	Additional Guidance	Mark
17(b)	• structure of A (1)	Examples of structures	(5)
		$ \begin{array}{c c} & H & H & H \\ \hline \\ & C & C & C & H \\ \hline \\ & H & OH & H \end{array} $ Ignore connectivity of OH	
	• structure of B (1)		
	• structure of C (1)	CHI ₃ (standalone mark)	
	• structure of D (1)		
		Allow <i>E</i> or <i>Z</i> isomer or both isomers	
	• structure of E (1)	$ \underbrace{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array}} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$	
		skeletal formulae Allow Kekule Structures Allow D TE on incorrect 2° alcohol A e.g. if A is C_6H_5 CH(OH)C ₂ H ₅ Allow E as TE on incorrect 1° alcohol A e.g. if A is $C_6H_5CH_2CH_2CH_2OH$ If D and E are the wrong way around, allow (1) for M4 and M5	

Question Number	Answer		Additional Guidance	Mark
17(c)	An explanation that makes reference to the following points:		Example of structure:	(2)
	• structure of F	(1)	2 3 6 6 C H 3	
	• carbon atoms labelled	(1)	$1 4 \\ 2 \\ 3 \\ 6 \\ CH_3 \\$	
			Allow displayed / structural formulae or any combination of these / skeletal formulae	
			Allow alternative clear ways of identifying carbon atoms	
			Allow	
			$1 \sqrt[2]{3}_{4} = 0 - 5 \sqrt[6]{6}_{6}$ M2 dependent on M1 unless very near miss (e.g.	
			accidental omitting H on OH group)	

Question Number	Answer	Additional Guidance	Mark
17(d)	An answer that makes reference to the following points:	Example of structure	(2)
	• structure of G (1)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		OR	
		OR	
		Allow any combination of structural and displayed formula / skeletal formula – if 2 structures are shown both must be incorrect	
	• m/z corresponds to C ₇ H ₇ O ⁺ / C ₆ H ₅ CHOH ⁺ / C ₆ H ₅ OCH ₂ ⁺ / C ₆ H ₅ CH ₂ O ⁺ / loss of C ₂ H ₅ (1)	Ignore missing +	
		M1 and M2 are standalone marks	
		No TE from incorrect structure	

(Total for Question 17 = 13 marks)

Question Number	Answer	Additional Guidance	Mark
18(a)		Allow V / 5 / V ⁵⁺	(1)
	• +5 / 5+		

Question Number	Answer	Additional Guidance	Mark
18(b)	An explanation that makes reference to the following points:		(3)
	• V ⁵⁺ / the vanadium ion is (very) small / highly charged (1)	Allow high charge density	
	• so it would polarise (two) water molecules / OH bonds (1)	Allow 'so it weakens OH bonds' Allow 'distorts electron clouds in water'	
	• causing them to lose hydrogen ions / H ⁺ ions / deprotonate (1)		
		Allow the energy required to remove 5 electrons to form V^{5+} is too high (1) because the energy is not recovered by the hydration of the ion (1) If no marks given allow 1 mark for correct electronic configuration of V^{5+} e.g. [Ar]	

Question Number		Answer			Additional Guidance			Mark		
18(c)				Example o	f calculation	on:				(3)
	•	calculation of mol of each element	(1)		K	V	S	Н	0	
				moles	<u>7.9</u>	<u>10.2</u>	<u>12.9</u>	<u>4.8</u>	<u>64.2</u>	
					39.1	50.9	32.1	1	16	
				1 1	= 0.202	= 0.200	= 0.402	= 4.8	=4.01	
				divide	0.202	$\frac{0.200}{0.200}$	$\frac{0.402}{0.200}$	$\frac{4.8}{0.200}$	$\frac{4.01}{0.200}$	
				smallest	0.200 = 1	0.200 = 1	0.200 = 2	0.200 = 24	0.200 = 20	
	•	deduction of mol ratio (and empirical formula)	(1)	Sindhest	Empirical	formula KV	$\frac{2}{(S_2H_{24}O_{20})}$	27	20	
				Ignore minor rounding		g errors in	M1 and M	[2		
				TE on mol	ratio from	M1		-		
				Example o	f overall fo	ormula:				
	•	overall formula	(1)	KV(SO ₄) ₂	•12H ₂ O					
				or						
				$K_2SO_4 \bullet V_2$	(SO ₄) ₃ •24H	I ₂ O				
				Allow KV	$(SO_4)_2(H_2O_4)(H_2O_4)(H_2O_4)(H_2O_4)(H_2O_4)(H_2O_4)(H_2O_4)(H_2O_4)(H_2O_4)(H_2O_4)(H_2O_$	$D)_{12}$				
				Allow K ₂ S	$O_4 \bullet V_2(SO_4)$	4)3(H2O)24				
				Ignore SF						
				Allow the	ions in any	order / con	rrect charg	es shown b	py ,	
				individual	ions, even	1t charges	are not sho	wn on all	ions /	
				missing do	ot(s)					
				No TE from	<u>m M2 to M</u>	13				

Question Number	Answer		Additional Guidance	Mark
18(d)(i)	• calculation of mol of V^{3+} (1	Example Mol V ³⁺	of calculation: = $\frac{10.0 \times 0.132}{1000}$ = 0.00132 / 1.32 x 10 ⁻³ (mol)	(3)
	• calculation of mol MnO_4^- (1)	Mol Mn0	$D_4^- = \frac{26.40 \text{ x } 0.0200}{1000} = 0.000528 / 5.28 \text{ x } 10^{-4} \text{(mol)}$	
	• calculation of ratio of MnO_4^- to V^{3+} (1)	Ratio Mr Allow TI Ignore SI Allow 5 1	$O_4^-: V^{3+} = 0.000528: 0.00132$ = 1 : 2.5 or 2 : 5 F on M1 and M2 F except 1 SF in calculation of moles o 2 if it's clear it's V ³⁺ : MnO ₄ ⁻	

Question Number	Answer		Additional Guidance	Mark
18(d)(ii)			Example of equation:	(2)
	• correct species on each side of equation	(1)	$2MnO_4^- + 5V^{3+} + 2H_2O \rightarrow 2Mn^{2+} + 5VO_2^+ + 4H^+$	
	• confect species on each side of equation	(1)	Or	
	• balancing	(1)	$2MnO_4^- + 5V^{3+} + 22H_2O \rightarrow 2Mn^{2+} + 5[VO_2(H_2O)_4]^+ + 4H^+$	
			Allow multiples	
			Allow (1) for	
	Comment – M2 dependent on M1		$2MnO_4^- \ + \ 5V^{3+} \ + \ 16H^+ \ \rightarrow \ 2Mn^{2+} \ + \ 5V^{5+} \ + \ 8H_2O$	
			Ignore state symbols even if incorrect	
			Allow oxidation to V(IV) if ratio 1 : 5 in (d)(i)	
			$MnO_4^- + 5V^{3+} + H_2O \rightarrow Mn^{2+} + 5VO^{2+} + 2H^+$	
			species (1) balancing (1)	

Question Number		Acceptable Answ	vers	Additional Guidance	Mark
Number 18(e)*	This question asses logically structured reasoning. Marks are awarded is structured and sh The following table indicative content. Number of indicative marking points seen in answer 6 5–4 3–2 1 0 The following table structure and lines	Acceptable Allsy sses a student's ability answer with linkage for indicative conten- nows lines of reasonin e shows how the mark awarded for indicative marking points 4 3 2 1 0 e shows how the mark of reasoning.	t o show a coherent and s and fully-sustained t and for how the answer g. cs should be awarded for cs should be awarded for	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

Answer shows a coherent and logical structure with linkages and fully	Number of marks awarded for structure of answer and sustained line of reasoning 2	In general, it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning.
sustained lines of reasoning demonstrated throughout.		
Answer is partially structured with some linkages and lines of reasoning.	1	
Answer has no linkages between points and is unstructured.	0	General points to note If there is any incorrect chemistry, deduct mark(s)
Look for the indicative marking points f mark for structure of answer and sustain	first, then consider the ned line of reasoning	

Indicative content	Ignore state symbols in all equations even if	
 IP1 – vanadium(V) to vanadium(IV) 	incorrect	
Both iron and tin will reduce / convert / change V(V) to V(IV)		
and	If IP1 and IP2 not awarded, allow 1 IP for either	
E°_{cell} for Fe = (+)1.44 V	totally correct iron or totally correct tin	
and		
E°_{cell} for Sn = (+)1.14 V		
• IP2 – equations $2VO^+ + 4U^+ + \Gamma = 2VO^{2+} + 2UO + \Gamma^{2+}$		
$2VO_2^\circ + 4H^\circ + Fe \rightarrow 2VO^2^\circ + 2H_2O + Fe^{-2}$		
and $2NO^+ + 4U^+ + S^- + 2NO^{2+} + 2U^- + S^{2+}$		
$2\sqrt{O_2} + 4\Pi + S\Pi \rightarrow 2\sqrt{O} + 2\Pi_2O + S\Pi$		
• IP3 – vanadium(IV) to vanadium(III)	If IP3 and IP4 not awarded, allow 1 IP for either	
Both iron and tin will reduce / convert / change V(IV) to	totally correct iron or totally correct tin	
V(III) and		
E_{cell}^{Θ} for Fe = (+)0.78 V		
and	Comment penalise references to Fe or Sn as	
E°_{cell} for Sn = (+)0.48 V	oxidising agents once only in IP1, IP3 and IP5	
• IP4 – equations		
$2\mathrm{VO}^{2+} + 4\mathrm{H}^+ + \mathrm{Fe} \rightarrow 2\mathrm{V}^{3+} + 2\mathrm{H}_2\mathrm{O} + \mathrm{Fe}^{2+}$		
and		
$2VO^{2+} + 4H^+ + Sn \rightarrow 2V^{3+} + 2H_2O + Sn^{2+}$	Image any references to colour of your diver	
• IP5 – vanadium(III) to vanadium(II)	ignore any references to colour of vanadium	
iron will reduce / convert / change V(III) to V(II) and $E^{\Theta}_{cell} =$	species	
(+)0.18 V	If no other marks awarded allow 1 IP for idea that	
and	Fe can reduce to V^{2+} but Sn (only) to V^{3+}	
un will not reduce / convert / change V(111) to V(11) and as $E_{\Phi} = -0.12$ V		
$E_{\text{cell}} = -0.12 \text{ V}$	If no other marks awarded allow 1 IP for three	
• If $0 - cquation$ $2V^{3+} + E_{2} \rightarrow 2V^{2+} + E_{2}^{2+}$	pairs of correct E^{Θ}_{cell} values	
$2\mathbf{v} + \mathbf{r}\mathbf{c} \rightarrow 2\mathbf{v} + \mathbf{r}\mathbf{c}$	-	

(Total for Question 18 = 18 marks)

Question Number	Answer	Additional Guidance	Mark
19(a)(i)	 curly arrow from on or within the circle to anywhere towards or on NO₂⁺ (1) intermediate structure including charge with 	Allow arrow that starts from anywhere within the hexagon Do not award curly arrow starting on or outside the hexagon Do not award missing + on electrophile Do not award missing OH in M1 only	(3)
	 horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon atom and some part of the positive charge must be within the horseshoe (1) curly arrow from C-H bond to anywhere in the hexagon, and final organic product shown (1) 	Do not award dotted bonds to H and NO ₂ unless they are part of a 3D structure Do not award formation of 4-nitrophenol / 3-nitrophenol in M2 only Comment – some part of the 'horseshoe' opening must be opposite the tetrahedral carbon, so only penalise if the line of the circle extends level with or past the tetrahedral C	
		Ignore additional equations to generate NO_2^+ and reform catalysts	
Examples	of mechanism:	•	
OH OH	$ \begin{array}{c} & & & \\ & $	$ \begin{array}{c} OH \\ H $	

Question Number	Answer	Additional Guidance	Mark
19(a)(ii)	An explanation that makes reference to the following points:	Allow reverse argument for why benzene is less reactive / requires harsher conditions	(2)
	Phenol is more reactive than benzene / requires milder conditions because:		
	 the lone pair (of electrons) on oxygen overlaps with the pi cloud / delocalised electrons / ring (1) 	Allow lone pair on OH group Ignore just lone pair Allow spreads into the pi cloud / delocalised electrons / ring (of electrons) Allow interacts with the pi cloud / delocalised electrons / ring (of electrons) Allow donated to the pi cloud / delocalised electrons / ring (of electrons)	
	• so increases the electron density of the (benzene) ring (1)	Allow the (benzene) ring is more susceptible to electrophilic attack Allow makes the (benzene) ring more nucleophilic Do not award 'makes the ring more electronegative'	

Question Number	Answer		Additional Guidance	Mark
19(b)	An answer that makes reference to the following points:		Allow displayed / structural formulae or any combination of these / skeletal formulae for intermediates	(5)
			Ignore any references to heat / reflux throughout	
	• Reagent for step 1: potassium cyanide and (aqueous) ethanol	(1)	Ignore HCN Allow NaCN	
	• First intermediate: 2-phenylethanenitrile	(1)	Stand alone mark	
			Allow -CN (i.e.triple bond not displayed)	
	• Reagent for step 2: lithium tetrahydridoaluminate(III) / LiAlH4 in (dry) ether (followed by (hydrolysis with) dilu acid / H ⁺)	tte		
		(1)	Do not award H_2 and $N_1 / Pt / Pd$	
	• Second intermediate: 2-phenylethylamine	(1)	Stand alone mark	
			NH ₂ Allow TE from M2, if extra C shown in nitrile	
	 Reagent for step 3: ethanoyl chloride / CH₃COCl / ethanoic anhydride / (CH₃CO)₂O 	(1)	Do not award ethanoic acid / CH ₃ COOH	
			Ignore AlCl ₃	

Con	omment – allow (3) for use of Grignard reagent ;	
M1 HCI KBr with	1 –formation of Grignard, then reaction with CHO to form $C_6H_5CH_2CH_2OH$, then reaction with Br / H_2SO_4 to form $C_6H_5CH_2CH_2Br$, then reaction th NH ₃	
M2	2 structure of C ₆ H ₅ CH ₂ CH ₂ NH ₂	
M3	3 reaction of C ₆ H ₅ CH ₂ CH ₂ NH ₂ with CH ₃ COCl	

Question Number	Answer	Additional Guidance	Mark
19(c)(i)	• structure of zwitterion	Example of zwitterion: NH ₃ Allow '+' anywhere on NH ₃ group Allow carboxylate ion shown with charge delocalised across two oxygen atoms Allow displayed / structural / skeletal formulae or any combination of these Ignore bond lengths and bond angles	(1)

Question Number	Answer	Additional Guidance	Mark
19(c)(ii)		Example of dipeptide:	(1)
	• structure of dipeptide		
		H ₂ N H OH	
		õ	
		Allow displayed / structural / skeletal formulae or any	
		combination of these	
		Allow C_6H_5 for the phenyl groups	
		Ignore bond lengths and bond angles	
		Ignore connectivity of OH unless	
		displayed as C-H-O (i.e. a bond shown from C to	
		H then to O)	

Question Number	Answer	Additional Guidance	Mark
19(c)(iii)			(1)
	• $C_{14}H_{18}N_2O_5$	Allow symbols in any order e.g. C ₁₄ H ₁₈ O ₅ N ₂	

Question Number	Answer	Additional Guidance	Mark
19(c)(iv)		Example of circled chiral carbons:	(1)
	• two chiral carbon atoms circled		
		Allow other ways of representing the two carbon atoms e.g. asterisk *	
		If more than two carbons are circled then do not award	

Question Number	Answer	Additional Guidance	Mark
19(c)(v)		Examples of structures:	(3)
	• structure of methanol (1)	CH ₃ OH / — OH	
	• structure of 2-amino-3-phenylpropanoic acid (1)	NH ₂ OH	
	• structure of 2-aminobutanedioic acid (1)	O HO HO	
	Comment Ignore connectivity of OH unless displayed as C-H-O (i.e. a bond shown from C to H then to O)	Allow structures in any order Allow displayed / structural / skeletal formulae or any combination of these Accept NH_3^+ for NH_2 groups Allow C ₆ H ₅ for the phenyl group Ignore bond lengths and bond angles	
		Ignore bond lengths and bond angles Ignore names even if incorrect	

Question Number	Answer		Additional Guidance	Mark
19(c)(vi)			Examples of calculation:	(3)
	• calculation of mass of aspartame in 1 can	(1)	Mass of aspartame = $53 \times 330/100 = 174.9 \text{ mg} / 0.1749 \text{ g}$	
	• calculation of mol of aspartame	(1)	Mol of aspartame = $0.1749/294 = 5.949 \times 10^{-4} / 0.0005949$ (mol)	
	 calculation of molecules of aspartame and answer to 1 / 2 / 3 SF 	(1)	Molecules aspartame = $5.949 \times 10^{-4} \times 6.02 \times 10^{23}$ (= 3.5813×10^{20}) = $4 \times 10^{20} / 3.6 \times 10^{20} / 3.58 \times 10^{20}$	
	 or calculation of mol of aspartame in 100 cm³ 	(1)	Or Mol aspartame = 53 x $10^{-3}/294$ = 1.8027 x $10^{-4} / 0.00018027$ (mol)	
	• calculation of mol of aspartame in 1 can	(1)	Mol aspartame in can = $1.8027 \times 10^{-4} \times 330/100$ = 5.949 x $10^{-4} / 0.0005949$ (mol)	
	 calculation of molecules of aspartame and answer to 1 / 2 / 3 SF 	(1)	Molecules aspartame = $5.949 \times 10^{-4} \times 6.02 \times 10^{23}$ (= 3.5813×10^{20}) = $4 \times 10^{20} / 3.6 \times 10^{20} / 3.58 \times 10^{20}$	
			Allow alternative methods	
			Allow TE throughout	
			Correct answer with no working scores (3)	
			Ignore SF except 1 SF in first 2 steps of working	

(Total for Question 19 = 20 marks) (Total for Section B = 51 marks)

Section C

Question Number	Answer		Ac	lditior	nal Gu	idanc	e		Mark
20(a)(i)		Examples of elec	tr <u>onic</u>	config	guratio	ons:			(1)
	• both electronic configurations correct	Mn atom: [Ar]		↑	↑	↑	↑		
					3d			4s	
						<u> </u>			
		Mn ²⁺ ion: [Ar]	↑	↑	1	Î	↑		
					30	1		4s	
		Allow half-arrows	5						
		Allow all arrows	pointi	ng dov	vnward	ds in 3	d subsh	nell	

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)	An explanation that makes reference to the following points:	Allow reverse argument	(3)
	 there is stability associated with a half-full set of (3)d orbitals (1) Mn²⁺ has five d electrons so is more stable than Mn³⁺ (and has a higher E^o value) (1) 	Allow 3d subshell with 5 electrons as alternative for half-filled Allow Mn^{2+} has five d electrons so eqm moves to RHS / Mn^{2+} has five d electrons so is energetically more favourable / more energy needed to remove an electron from Mn^{2+} as it has five d electrons	
	 Fe²⁺ has six d electrons so is less stable than Fe³⁺ (and has a lower E⁹ value) (1) 	Allow Fe^{3+} is more stable as it has a half-filled subshell so Fe^{2+} tends to lose electrons, (making E° less positive) Allow Fe^{2+} has a pair of electrons (in a d orbital) that repel so is less stable than Fe^{3+} (and has a lower E° value)	
	If M2 and M3 not awarded then allow 1 rescue mark for two correct electronic configuration from	lower L value)	
	$Mn^{3+} = [Ar] 3d^{4}$ $Fe^{2+} = [Ar] 3d^{6}$ $Fe^{3+} = [Ar] 3d^{5}$		
	If more than two electronic configurations are given and one is incorrect then do not award the rescue mark		

Question Number	Answer		Additional Guidance	Mark
20(b)(i)	An explanation that makes reference to the following points:		Allow oxidation numbers shown under equation	(2)
	• Mn reduced from (+)4 to (+)2	(1)	Allow Mn ⁴⁺ and Mn ²⁺	
	• Cl oxidised from -1 to 0 and in Cl ₂	(1)	Allow Cl ⁻	
			Comments: 0 must be linked to Cl ₂	
			If no other mark is awarded, allow (1) for all oxidation numbers of Mn and Cl correct	

Question Number	Answer	Additional Guidance	Mark
20(b)(ii)		Example of calculation:	(2)
	• calculation of mol O ₂ (1)	Mol of $O_2 = \frac{86.0}{24000} = 0.0035833 / 3.5833 \times 10^{-3} \text{ (mol)}$	
	• calculation of concentration of H ₂ O ₂ (1)	Mol H ₂ O ₂ = 2 x 0.0035833 = 0.0071667 / 7.1667 x 10 ⁻³ (mol) and Conc H ₂ O ₂ = $\frac{0.0071667 \times 1000}{100}$ = 0.071667 / 7.1667 x 10 ⁻² (mol dm ⁻³) TE on mol O ₂ Ignore SF except 1 SF	
		Comment – if M1 is rounded to 0.00358 and carried through into M1 and M2, this gives a final answer of 0.0716	

20(c)Example of equation: $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$ Allow multiples Allow reversible arrows provided reactants as show still on LHS Allow uncancelled electrons on either side Ignore state symbols even if incorrect Ignore state show atoms, oven if incorrect	(1)

Question Number	Answer	Additional Guidance	Mark
20(d)	An explanation that makes reference to the following points:	Mn ²⁺ can be mentioned at any point	(3)
	• this reaction is (auto)catalysed by the Mn^{2+} ions formed (1)		
	 (the reaction in) experiment 1 starts slowly because there is no Mn²⁺ / catalyst present initially (but speeds up as Mn²⁺ ions are formed) (1) 	Allow experiment 1 starts slowly but speeds up as Mn^{2+} / catalyst forms	
	 (the reaction in) experiment 2 is fast(est) at the start as Mn²⁺ ions / catalyst (already) present (1) 	Allow rate decreases constantly as Mn ²⁺ ions / catalyst (already) present	

Question Number	Answer	Additional Guidance	Mark
20(e)(i)	• calculation of mol of KMnO ₄ (1)	Example of calculation: Mol KMnO ₄ = $\frac{7.00}{158}$ = 0.044304 (mol)	(3)
	 calculation of mol of C₆H₅CH₃ (1) KMnO₄ is in excess because there are more than twice as many mol of KMnO₄ than mol of C₆H₅CH₃ (1) 	Mol C ₆ H ₅ CH ₃ = $\frac{1.73}{92}$ = 0.018804 (mol) Accept 0.044304 mol KMnO ₄ would react with 0.022152 mol C ₆ H ₅ CH ₃ or reverse argument TE on M1 and M2 Allow other methods e.g. Mol C ₆ H ₅ CH ₃ = $\frac{1.73}{92}$ = 0.018804 (mol) (1) 92 Minimum mass of KMnO ₄ needed = 2 x 0.018804 x 158 = 5.9421 (g) (1) This is less than 7 g so KMnO ₄ is in excess (1) Ignore SF except 1 SF in M1 and M2	

Question	Answer	Additional Guidance	Mark
Number			
20(e)(ii)			(1)
	• add H ⁺ ions / acidify the solution / mixture	Allow correct name or formula of any strong acid e.g. HCl, H ₂ SO ₄ , HNO ₃ , H ₃ PO ₄ Do not award carboxylic acids e.g. CH ₃ COOH Allow C ₆ H ₅ CO ₂ ⁻ + H ⁺ \rightarrow C ₆ H ₅ COOH	
		Ignore references to concentration / heat / reflux Do not award 'acid hydrolysis' / acid catalyst / H ⁺ ions from water / inclusion of a second incorrect reagent e.g. H ⁺ and LiAlH ₄	

Question Number	Answer		Additional Guidance	Mark
20(f)(i)			Examples of equations:	(2)
	• anode half-equation ((1)	$Zn + 2OH^- \rightarrow ZnO + H_2O + 2e^-$	
	• cathode half-equation ((1)	$2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^-$	
			Allow multiples / reversible arrows	
			Ignore state symbols even if incorrect	
			If no other mark is awarded allow (1) for anode and cathode half-equations written in wrong places	
			If no other mark awarded allow 1 mark for Zn on the left-hand side of the anode reaction and MnO ₂ on the left-hand side of the cathode reaction	

Question Number	Answer	Additional Guidance	Mark
20(f)(ii)	• $(E^{\bullet} = +)0.15 (V)$	Do not award – 0.15(V)	(1)

(Total for Question 20 = 19 marks) (Total for Section C = 19 marks)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom