Pearson Edexcel

Mark Scheme (Final)

Summer 2023

Pearson Edexcel International Advanced
Subsidiary Level In Chemistry (WCH14)
Paper 01
Unit 4: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number: P71942A
Publications Code: WCH14_01_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
$\mathbf{1}$	The only correct answer is $\mathbf{B}\left(K_{\mathrm{c}}=\frac{[\mathrm{Y}]^{2}[\mathrm{Z}]}{[\mathrm{W}][\mathrm{X}]}\right)$	(1)
\boldsymbol{A} is incorrect because Y has been multiplied by 2 instead of raised to the power of its coefficient		
C is incorrect because the expression has been inverted and because Y has been multiplied by 2 instead of raised to the power of its coefficient \boldsymbol{D} is incorrect because the expression has been inverted		

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is B (homogeneous, decreases)	(1)
	\boldsymbol{A} is incorrect because the system is homogenous at $360^{\circ} \mathrm{C}$	
	\boldsymbol{C} is incorrect because the system is homogenous at $360^{\circ} \mathrm{C}$ and K_{c} decreases	
\boldsymbol{D} is incorrect because K_{c} decreases		

Question Number	Answer	Mark
$\mathbf{3}$	The only correct answer is C $\left(\mathrm{atm}^{-2}\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is incorrect because coefficients have not been taken into account	
\boldsymbol{B} is incorrect because coefficients have not been taken into account and the expression has been inverted		
\boldsymbol{D} is incorrect because these are the units for the inverted expression		

Question Number	Answer	Mark
4(a)	The only correct answer is \mathbf{D} (time, absorption)	(1)
	\boldsymbol{A} is incorrect because the labels are the wrong way round	
	\boldsymbol{B} is incorrect because R_{f} is not used in HPLC	
\boldsymbol{C} is incorrect because R_{f} is not used in HPLC		

Question Number	Answer	Mark
4(b)	The only correct answer is \mathbf{D} (G is most attracted to the stationary phase, F is the most abundant)	(1)
	\boldsymbol{A} is incorrect because E is the least attracted to the solid phase and F is the most abundant	
\boldsymbol{B} is incorrect because F is the most abundant		
\boldsymbol{C} is incorrect because E is the least attracted to the solid phase		

Question Number	Answer	Mark
5	\boldsymbol{A} is incorrect because the molecules are not enantiomers (the molecule on the right is not chiral) \boldsymbol{B} is incorrect because the same enantiomer is shown twice \boldsymbol{C} is incorrect because the molecules are not enantiomers (the molecule on the right is not chiral)	(1)

Question Number	Answer	Mark
6	The only correct answer is B (1, \boldsymbol{A} is incorrect because there is only 1 chiral centre \boldsymbol{C} is incorrect because there is only 1 chiral centre D is incorrect because there is only 1 chiral centre	(1)

Question Number	Answer	Mark
7	The only correct answer is A (rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{2}\left[\mathrm{I}^{-}\right]$) \boldsymbol{B} is incorrect because the concentration of hydrogen peroxide should be squared C is incorrect because this includes an intermediate \boldsymbol{D} is incorrect because the concentration of hydrogen peroxide should be squared and includes an intermediate	(1)

Question Number	Answer	Mark
8	 \boldsymbol{B} is incorrect because there is an extra -OH group on the alcohol \boldsymbol{C} is incorrect because $a C=O$ on the acid has been replaced by a methyl group forming an ether linkage \boldsymbol{D} is incorrect because an ester link has been replaced by an ether	(1)

Question Number	Answer	Mark
$\mathbf{9 (b)}$	The only correct answer is B (ethanamide)	(1)
	\boldsymbol{A} is incorrect because it is not a ketone	
C is incorrect because it is not an IUPAC name		
	D is incorrect because there are two carbon atoms in the formula	

Question Number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is D (higher, higher)	(1)
\boldsymbol{A} is incorrect because hydrogen bonding in butanoic acid results in higher boiling temperature and solubility in water		
	\boldsymbol{B} is incorrect because hydrogen bonding in butanoic acid results in higher boiling temperature	
\boldsymbol{C} is incorrect because hydrogen bonding in butanoic acid results in higher solubility in water		

Question Number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is B (3-hydroxy-2-methylbutanoic acid)	(1)
	\boldsymbol{A} is incorrect because the numbering of the groups is incorrect	
\boldsymbol{C} is incorrect because the acid does not have an additional methyl branch on the third carbon		
\boldsymbol{D} is incorrect because the acid is not a straight chain		

Question Number	Answer	Mark
12	The only correct answer is B (ethane-1,2-diol) \boldsymbol{A} is incorrect because the disodium salt of the acid would be produced \boldsymbol{C} is incorrect because ethanedioic acid is not a monomer of the polyester D is incorrect because water is used in the hydrolysis and is not a product	(1)

Question Number	Answer	Mark
$\mathbf{1 3 (a)}$	The only correct answer is B (bromothymol blue, phenol red and phenolphthalein)	(1)
	\boldsymbol{A} is incorrect because bromocresol green and methyl red do not change within the vertical portion	
\boldsymbol{C} is incorrect because methyl red does not change within the vertical portion		
\boldsymbol{D} is incorrect because the indicators do not change within the vertical portion		

Question Number	Answer	Mark
$\mathbf{1 3 (b)}$	The only correct answer is A $\left(\mathrm{CH}_{3} \mathrm{COOH}\right.$ and NaOH$)$	$\mathbf{(1)}$
	\boldsymbol{B} is incorrect because ammonia is not a strong base	
\boldsymbol{C} is incorrect because HCl is a strong acid		
\boldsymbol{D} is incorrect because HCl is a strong acid		

Question Number	Answer	Mark
14(a)	The only correct answer is A (\boldsymbol{B} is incorrect because the curve is inverted \boldsymbol{C} is incorrect because this is a titration curve for a monoprotic acid \boldsymbol{D} is incorrect because this is a titration curve for a triprotic acid	(1)

| Question
 Number | Answer |
| :--- | :--- | :---: |
| $\mathbf{1 4 (b)}$ | The only correct answer is B ((Z)-but-2-enedioic acid) |
| | A is incorrect because maleic acid is the Z isomer |
| | \boldsymbol{C} is incorrect because the carbon chain of maleic acid has four carbon atoms and maleic acid is the Z isomer |
| | D is incorrect because the carbon chain of maleic acid has four carbon atoms |

Question Number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is $\mathbf{C}\left(\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{3}{ }^{2-}\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is incorrect because these species are interconverted by protonation/deprotonation	
	\boldsymbol{B} is incorrect because these species are interconverted by protonation/deprotonation	
	\boldsymbol{D} is incorrect because these species are interconverted by protonation/deprotonation	

Question Number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is D (13.1)	
	\boldsymbol{A} is incorrect because the molarity was divided by 200 instead of 0.2	(1)
\boldsymbol{B} is incorrect because the moles of barium hydroxide were used instead of the concentration of hydroxide ions		
\boldsymbol{C} is incorrect because the concentration of barium hydroxide is used instead of the concentration of hydroxide ions		

Section B

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 7 (\mathbf { a })}$	$\bullet(+) 178\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	Do not award $-178\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Ignore units even if incorrect	$(\mathbf{1})$

Question Number	Answer		Additional Guidance	Mark
17(b)	- equation or workings - answer to 3SF with negative sign	(1) (1)	Example of calculation: $\begin{aligned} & \Delta_{\mathrm{f}} H=\Sigma(\text { all other terms }) \\ & \Delta_{\mathrm{f}} H=178+590+1145+(2 \times 122)+(2 \times-349)+(-2258) \\ & -799\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ Correct answer scores (2) TE on incorrectly transferred values e.g. -394 Penalise omission of $\times 2$ once only (-572 scores 1 mark) TE on one incorrect sign No TE on incorrect expression Penalise M2 for incorrect units +799 scores 1 mark	(2)

Question Number	Answer	Additional Guidance	Mark
17(c)	An explanation that makes reference to the following points: - calcium chloride is almost completely ionic - calcium iodide has partially covalent character - iodide (ion) is larger (than chloride (ion)) - (so) more (easily) polarised	Allow reverse arguments Accept CaCl_{2} is 100% ionic Allow LE is calculated assuming a pure ionic structure Allow shows more covalent character Allow CaCl_{2} has less covalent character than CaI_{2} Ignore polar Do not award M2 for CaI_{2} is covalent Do not award M2 for Intermolecular forces Accept iodide has a lower charge density Allow iodine ion Ignore iodine is larger Do not award molecules, Cl_{2} or I_{2} loses M3 Accept more (easily) distorted Allow (more) polarisable Do not award CaI_{2} is more polarised If no comparison for M3 and M4 allow 1 mark, e.g., "iodide is large and is polarised" Penalise iodine/chlorine or incorrect ions once only.	(4)

Question Number	Answer	Additional Guidance	Mark
17(d)(i)	An answer that makes reference to the following points: - two labelled arrows in the correct direction - formulae including state symbols	An example of a completed cycle: Accept two arrows on right-hand side Allow $\Delta_{\text {latt }} H / \Delta H_{\text {latt }}$ Allow $\Delta_{\text {hyd }} H$ alone on right-hand arrow Allow $\Delta H_{\text {hyd }}$ Allow numerical values rather than the symbols Allow missing 2 for the $\Delta_{\text {hyd }} \mathrm{HCl}^{-}$ Allow left arrow going down if labelled as lattice dissociation energy or -LE	(2)

Question Number	Answer		Additional Guidance	Mark
17(d)(ii)	- calculation - enthalpy change of solution	(1) (1)	Example of a calculation: $\begin{aligned} & -(-2258)-1579-(2 \times 378) \\ & =-77\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ No TE on an incorrect cycle, but (+)77 scores 1 mark Allow TE on transcription errors from M1, and award M2 Allow $\times 2$ omitted, answer $=(+) 301\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (1)	(2)

Question Number	Answer	Additional Guidance	Mark
18(a)(i)	- smooth line of best-fit through all the points	An example of a graph: Ignore extrapolation at either end of the best-fit line Allow non-smooth lines, within 1 square of each point Do not award use of a ruler	(1) Expert
Question Number	Answer	Additional Guidance	Mark
18(a)(ii)	- graph is not a straight line (through the origin)	Accept reverse argument Accept 1st order would be a straight line Accept the relationship is not linear / directly proportional Allow $2^{\text {nd }}$ order with justification e.g., as it's a curve or rate quadruples when concentration doubles Ignore half lives Allow rate not doubling when concentration is doubled Ignore gradient not constant. Ignore exponential No TE 18(a)(i)	(1)

Question Number	Answer	Additional Guidance		Mark
$\mathbf{1 8 (a) (i i i) ~}$	An answer that makes reference to the following points:		(2)	
	\bullet order of reaction for NO	(1)	$2 / 2^{\text {nd }} /$ second	
	\bullet order of reaction for O_{2}	(1)	$1 / 1^{\text {st }} / \mathrm{first}$	

Question Number	Answer	Additional Guidance	Mark
18(a)(iv)	\bullet rate $=\mathrm{k}\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.$	Allow TE on incorrect orders in a(iii) Allow r on LHS Do not award round brackets Must be a rate equation to gain the mark Correct answer scores 1	(1)

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{1 8 (\mathbf { a }) (\mathbf { v })}$	- substitution or rearrangement	(1)	Example of a calculation: $0.040=\mathrm{k}(0.010)^{2}(0.05)$ $\mathrm{k}=\frac{0.040}{(0.010)^{2}(0.05)}$ $=8000 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ Allow units in any order Allow s Allow $\mathrm{dm}^{6} / \mathrm{mol}^{2} \mathrm{~s}$ but not $\mathrm{dm}^{6} / \mathrm{mol}^{2} / \mathrm{s}$ Allow TE on a(iv) for both marks, units must match order for M2 Correct answer with units scores 2, even if expression in Q18(a)(iv) is incorrect	

Question Number	Answer	Additional Guidance	Mark
18(b)	An answer that makes reference to the following points: - the equilibrium constant is (very) large - the equilibrium position is (far) to the right / (heavily) favours the products	Allow $\mathrm{K}_{\mathrm{p}} \gg 1$ Allow synonyms e.g., huge, massive, etc. Allow high Ignore quite large Ignore $K_{p}>1$, positive Ignore numerator is larger than the denominator Ignore references to partial pressures Allow goes to completion Do not award "shifts to the right" Ignore favours the forward reaction Do not award M2 for comments on rate For two marks there must be a comment on extent/magnitude	(2)

(Total for Question $18=9$ marks)

Indicative content:

- IP1: 3 peaks so 3 (proton/hydrogen/H) environments
- IP2: the peak in the range $3.7-4.2(\delta / \mathrm{ppm})$ is the H attached to the same carbon as the bromine
- IP3: split into 5 peaks as next to 4 hydrogens
- IP4: the peak at $0.8-1.3(8 / \mathrm{ppm})$ is the Hs in the methyl groups and the peak at $1.6-2.2(\delta / \mathrm{ppm})$ is the two $-\mathrm{CH}_{2}-$ hydrogen groups
- IP5: peak areas 1:4:6
- IP6: identification of 3-bromopentane by name or structural formula

Allow " 3 chemical shifts" in place of peaks
Accept - CHBr - has the highest chemical shift Allow IP2 if peak is correctly labelled on the spectrum
IP2 can be awarded for any of the three formulae
Allow any word that implies 5 peaks e.g., pentet, quintuplet, quintet or multiplet
IP3 can be awarded for any correct explanation of splitting patterns - reference to $(\mathrm{n}+1)$ rule

IP4 can be awarded for an explanation of the symmetry of the molecule leading to equivalent methyl and CH_{2} groups, if the peaks are correctly identified (including on the diagram)
Allow IP4 if peaks are correctly labelled on the spectrum
Allow IP4 to be awarded if the correct splitting patterns are described for δ-values of both peaks.

Allow numbers in any order
Allow ratio alone

Allow single values for chemical shifts throughout (within each range)

I1, I2, I4, I5 and I6 can be shown on a labelled diagram with labelled spectrum

Question Number	Answer	Additional Guidance	Mark
19(b)	An answer that makes reference to the following points - lone pair on oxygen of OH^{-} - dipole on $\mathrm{C}-\mathrm{Br}$ - curly arrow from lone pair to delta positive carbon - curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br or just beyond (allow shown on transition state) - transition state (including partial bonding) - negative charge anywhere on transition state - propan-1-ol and Br^{-}	Example of a mechanism: Ignore charges for P5 Do not award $\mathrm{OH}-\mathrm{C}$ connectivity for P5 TE on incorrect reactant molecule TE on incorrect connectivity from transition state for P7 but otherwise do not award $\mathrm{OH}-\mathrm{C}$ Allow 2D representations $\mathrm{S}_{\mathrm{N}} 1$ mechanisms could score points $1,2,4$ and 7 (2 marks max) All 7 points score 4 marks, 5 or 6 points scores 3 marks, 3 or 4 points scores 2 marks, 2 points scores 1 mark	(4)

(Total for Question 19 = 13 marks)

Question Number	Answer		Additional Guidance	Mark
20(a)(i)	- expression or suitable working - correct answer	(1) (1)	Example of a calculation: $(192+0.5 \times 205)-(220)$ $(+) 74.5\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ Correct answer scores 2 -74.5 scores 0 TE on small errors in M1 e.g., miss out 0.5 , as long as the answer is positive Penalise incorrect units once only for ai-aiii Allow $\mathrm{J} \mathrm{K}^{-} \mathrm{mol}^{-}$ Allow J/K mol but not J/K/mol	(2)

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)	- balanced equation or suitable working - correct answer	Example of a calculation: $\begin{align*} & \Delta \mathrm{S} \text { surroundings }=-\Delta H / T \tag{1}\\ & =-(-82000) \div(2048) \\ & =82000 \div 2048 \end{align*}$ $\text { (+) } 40.039\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ Correct answer scores 2 Ignore SF - 40 scores 1 mark 0.04 scores 1 mark with correct units or without units, 2 marks with $\mathrm{kJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	(2)

Question Number	Answer	Additional Guidance	Mark
20(a)(iii)		Example of a calculation:	
	• total entropy change	$74.5+40.0=(+) 114.5\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ TE on ai and aii, but both must be in the correct units Ignore SF except 1 SF	

Question Number	Answer	Additional Guidance	Mark
20(b)	- gradient - activation energy (1)	Example of a calculation: $\begin{equation*} \frac{(-197)-(-190)}{(0.00673)-(0.00649)}=\frac{-7}{0.00024} \tag{1} \end{equation*}$ gradient $=-29167(\mathrm{~K})$ (allow any negative value between 28 300-30 000) $(-8.31 \times-29167) \div 1000=(+) 242.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (allow values between 235.1 to 249.3 for 2 marks) Ignore SF except 1 SF Allow TE from M1 Answers in $\mathrm{J} \mathrm{mol}^{-1}$ score both marks if in the allowed range (235100-249300)	(2)

Question Number	Answer	Additional Guidance	Mark
20(c)	An explanation that makes reference to the following points: - (thermodynamically) feasible because $\Delta S_{\text {total }}$ is positive - activation energy high so the reaction is very slow (at low temperatures)	Ignore thermodynamically stable/unstable Allow high temperature will provide E_{a} so reaction will proceed Allow reaction may not happen as E_{a} is (very) high Allow high E_{a} so kinetically stable Allow high E_{a} so kinetically non-feasible TE on 20(a)(iii) but not on 20(b)	(2)

(Total for Question $20=9$ marks)

Question Number	Answer		Additional Guidance			Mark
21(a)	An answer that makes reference to the following points: - row for oxidation correct - row for reduction correct		Example of an answer:			(2)
			Reagent and conditions	$\begin{gathered} \text { Reaction } \\ (\checkmark / x) \\ \hline \end{gathered}$	Name of organic product (if formed)	
		(1)	refluxed with excess acidified potassium dichromate(VI)	x	(N/A)	
		(1)	excess lithium tetrahydrioaluminate(III) in dry ether	$\sqrt{ }$	hexane-2,5-diol	
			Accept no product or Accept 2,5-hexanedio Ignore errors with spa Do not award hex-2,3	lank in in secon es, com diol	st row row as and missing ne or e in hexane	

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| 21(b) | An answer that makes reference to the
 following point:
 $\bullet \quad$ (pale) yellow crystals | (1)
 Allow precipitate $/ \mathrm{ppt} / \mathrm{ppte} / \mathrm{solid}$
 Allow antiseptic smell
 Ignore formulae even if incorrect
 Do not award yellow-orange
 Use the list principle: if two answers and one correct and one
 wrong, no credit. |

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 1 (c) (i)}$	An answer that makes reference to the following point: \bullet nucleophilic addition	Do not award $S_{N} 1$ or $S_{N} 2$	

Question Number	Answer	Additional Guidance	Mark		
21(c)(ii)	An answer that makes reference to the following point:	Allow displayed / skeletal / any combination		\quad (1)	Do not award missing hydrogens or single bonds
:---					
shown between C and N.					
If two structures are given both must be correct.	\quad.				

Question Number	Answer	Additional Guidance	Mark
21(d)(i)	An answer that makes reference to the following point:	Allow yellow / red Allow crystals / solid / ppt / ppte Ignore modifiers e.g., dark/light/brick Do not award reddish-brown	

Question Number	Answer	Additional Guidance	Mark
21(d)(ii)	A description that makes reference to the following points:		
• (re)crystallise	(1)	Ignore purify the product	(2)
	measure the melting temperature and compare with (1) known values	Allow refer to database, etc. Ignore NMR / mass spec. etc.	

Section C

Question Number	Answer	Additional Guidance	Mark
22(b)(i)	An explanation that makes reference to the following points: - Tris accepts (small amounts of) $\mathrm{H}^{+} /$protons - base and conjugate acid are present in high concentrations / (large) reservoir of both - the ratio of [base]/[acid] only changes very slightly and pH changes only slightly	Allow increase in H^{+}causes the equilibrium to move to the right Allow reacts with/removes Ignore mops up Allow large amounts of tris and salt/acid Allow $\mathrm{pH} /\left[\mathrm{H}^{+}\right]$is unchanged with ratio comment Allow ratio changes a little / changes slightly with comment on pH Ignore there is no change in concentrations / the ratio is unchanged Ignore references to base/alkali/molecules/ions	(3) Expert

Question Number	Answer	Additional Guidance	Mark
22(b)(ii)	• correct expression	Allow use of skeletal structure or molecular formula	(1)
		$K_{\mathrm{a}}=\frac{\left[\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{NO}_{3}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}_{3}{ }^{+}\right]}$ 	Do not accept round brackets NB If no answer is given here, check in the answer to 22(b)(iii)

Question Number	Answer	Additional Guidance	Mark
22(b)(iii)	- M_{r} of $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{Cl}$ - concentration of $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{Cl}$ - substitution and rearrangement of K_{a} - H^{+}concentration - pH calculation	Example of a calculation: $\begin{align*} & M_{\mathrm{r}}=157.5 \tag{1}\\ & 100 \div 157.5=0.6349 \mathrm{~mol} \tag{1}\\ & 0.6349 \div 0.5=1.2698 \mathrm{~mol} \mathrm{dm}^{-3} \\ & {\left[\mathrm{H}^{+}\right]=\frac{8.413 \times 10^{-9} \times[1.2698]}{[0.2]}} \tag{1} \end{align*}$ TE on inverted K_{a} expression from (b)(ii) $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=5.342 \times 10^{-8}} \\ & \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=7.27 \end{aligned}$ They can also use moles rather than conc $^{\mathrm{n}_{\mathrm{s}}}$ as the volume terms cancel out in the expression $\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times([$ acid $] /[$ salt $])$ M1, M4 and M5 are the same as above. $\mathrm{M} 2-$ Moles base $=0.2 \times 0.5=0.1$ and 0.6349 mol of $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{Cl}$ M3 - substitution and rearrangement: $\left[\mathrm{H}^{+}\right]=8.413 \times 10^{-9} \times(0.635 \div 0.1)$ TE throughout, for M5 the answer must be above 7 to score Correct answer with some working scores 5 Ignore SF except 1 SF 8.88 scores 4 marks with a correct expression in (b)(ii) or 5 marks if their expression was inverted in (b)(ii). Henderson-Hasselbalch solution: M1 and M2 as above $\mathrm{M} 3=\mathrm{pK}_{\mathrm{a}}=8.075$ $\begin{align*} & \mathrm{M} 4=\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10}\left(\frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]}\right) \tag{1}\\ & \mathrm{OR} \end{align*}$ $\begin{equation*} \mathrm{pH}=8.075+\log _{10}\left(\frac{[0.2]}{[1.2698]}\right) \tag{1} \end{equation*}$ M5 pH correct for expression and above 7	(5)

Question Number	Answer	Additional Guidance	Mark
22(c)	- calculation of concentration of acid - calculation of $\left[\mathrm{H}^{+}\right]$value - expression or substitution into expression - evaluation of K_{a}	Example of a calculation: $\begin{align*} & 0.0150 \div 94.5=0.0001587 / 1.59 \times 10^{-4} \tag{1}\\ & 0.0001587 \div 1.5=0.00010582 / \mathbf{1 . 0 5 8} \times \mathbf{1 0}^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & {\left[\mathrm{H}^{+}\right]=10^{-3.42}=\mathbf{3 . 8 0 2} \times \mathbf{1 0}^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \tag{1}\\ & \left(\left[\mathrm{H}^{+}\right]^{2}=1.445 \times 10^{-7}\right) \tag{1}\\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\text { acid }]} \text { or } K_{\mathrm{a}}=\frac{\left[1.445 \times 10^{-7}\right]}{\left[1.058 \times 10^{-4}\right]} \\ & K_{\mathrm{a}}=0.0013655 / 1.37 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ TE from M3 if answer < 1 Allow $1.36 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ for 4 marks Ignore SF except 1 SF Correct answer with no working scores 4 Penalise incorrect units for M4	(4) Expert

Question Number	Answer	Additional Guidance	Mark
22(d)(i)	An explanation that makes reference to the following points: - over a large range from 4 to $16.4\left(\mathrm{~cm}^{3}\right)$ of acid added - there is little difference in pH	Allow a range between 2 and 16.4 of acid added Allow no (significant) change M2 is dependent on M1 Large volume of acid added before a change in pH is seen scores 1 The pH doesn't change when a large volume of acid is added scores 1	(2) Expert

Question Number	Answer	Additional Guidance	Mark
22(d)(ii)	$\bullet 5.8$	Allow answers in the range 5.6-6.2	(1)

Question Number	Answer	Additional Guidance	Mark
22(d)(iii)	An answer that makes reference to one of the following points: - pH is important for enzyme function - constant pH is important for living organisms - pH regulates growth of bacteria and fungi - pH is linked to oxygen availability in water	Allow enzymes may be denatured at high or low pH Allow enzymes may be denatured at the wrong pH NB The word denatured is not on the specification so not essential Allow to have the correct pH for metabolic processes / reactions Allow to maintain the pH of blood Allow sudden pH change can be dangerous to organs of the body Ignore "resists change to pH "	(1) Expert

(Total for Question $22=20$ marks) TOTAL FOR SECTION C $=20$ MARKS TOTAL FOR PAPER = 90 MARKS

