Pearson Edexcel

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced
Subsidiary Level In Chemistry (WCH15)
Paper 01
Unit 5: Transition Metals and Organic Nitrogen
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number: P71943A
Publications Code: WCH15_01_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
1	The only correct answer is $\mathbf{D}\left(\mathrm{Pt}(\mathrm{s})\left\|\mathrm{V}^{2+}(\mathrm{aq}), \mathrm{V}^{3+}(\mathrm{aq})\right\|\left\|\mathrm{Cu}^{2+}(\mathrm{aq})\right\| \mathrm{Cu}(\mathrm{s})\right)$ \boldsymbol{A} is not correct because the $V^{3+}(a q) / V^{2+}(a q)$ half-cell should have a platinum electrode and should show oxidation and the $\mathrm{Cu}^{2+}(a q) / \mathrm{Cu}(\mathrm{s})$ half-cell should show reduction B is not correct because the $V^{3+}(a q) / V^{2+}($ aq $)$ half-cell should have a platinum electrode \boldsymbol{C} is not correct because the $\mathrm{V}^{3+}(a q) / V^{2+}(a q)$ half-cell should show oxidation and the $\mathrm{Cu}^{2+}(a q) / \mathrm{Cu}(\mathrm{s})$ half-cell should show reduction	(1) Computer

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is $\mathbf{D ~}\left(\mathrm{Mg}+2 \mathrm{Ce}^{4+} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Ce}^{3+}\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is not correct because C e is a weaker reducing agent than Mg	
\boldsymbol{B} is not correct because $C e^{3+}$ is a weaker reducing agent than Ce		
\boldsymbol{C} is not correct because Mn^{2+} is a weaker reducing agent than Mn	Computer	

Question Number	Answer	Mark
3	The only correct answer is $\mathbf{D}\left(\Delta S^{\ominus}{ }_{\text {total }}\right)$ \boldsymbol{A} is not correct because E^{θ} cell is directly proportional to $\ln K_{c}$ \boldsymbol{B} is not correct because $E^{\theta}{ }_{\text {cell }}$ is directly proportional to $\Delta S^{\theta}{ }_{\text {total }}$ and not ΔH^{θ} \boldsymbol{C} is not correct because E^{θ} cell is directly proportional to $\Delta S^{\theta}{ }_{\text {total }}$ and not $\Delta S^{\theta}{ }_{\text {system }}$	(1) Computer

Question Number	Answer	Mark
$\mathbf{4}$	The only correct answer is C (the reactants are thermodynamically unstable with respect to the products)	(1)
	\boldsymbol{A} is not correct because the reaction is thermodynamically feasible so will occur under certain conditions	
\boldsymbol{B} is not correct because the E^{θ} cell value is a thermodynamic and not a kinetic property	Computer	
\boldsymbol{D} is not correct because the reaction may be kinetically inert and the conditions may be non-standard		

Question Number	Answer	Mark
$\mathbf{5}$	The only correct answer is A $\left(\mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}\right)$	$\mathbf{(1)}$
	\boldsymbol{B} is not correct because hydrogen is consumed and not produced in a hydrogen-oxygen fuel cell	
\boldsymbol{C} is not correct because oxygen is reduced at the positive electrode in a hydrogen-oxygen fuel cell		
\boldsymbol{D} is not correct because oxygen is consumed and not produced in a hydrogen-oxygen fuel cell		

Question Number	Answer	Mark
6	The only correct answer is $\mathbf{D}\left(\mathrm{Cu} \quad[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}\right)$	(1)
	\boldsymbol{A} is not correct because the 4 s electrons are removed before the 3 d electrons	Computer
	\boldsymbol{B} is not correct because the electronic configuration of chromium is [Ar] $3 d^{5} 4 s^{1}$	
	\boldsymbol{C} is not correct because the 4s electrons are removed before the 3d electrons	

Question Number	Answer	Mark
$\mathbf{7}$	The only correct answer is C (six)	$\mathbf{(1)}$
	\boldsymbol{A} is not correct because it only takes into account water ligands	
	\boldsymbol{B} is not correct because it only takes into account ethanoate ions	
\boldsymbol{D} is not correct because the coordination numbers of the two chromiums have been added together		

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is A $\left(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}\right)$	(1)
	\boldsymbol{B} is not correct because $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is a bidentate ligand	
\boldsymbol{C} is not correct because EDTA^{4-} is a hexadentate ligand		
\boldsymbol{D} is not correct because $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ is a bidentate ligand		

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Answer	Mark		
$\mathbf{9}$	The only correct answer is $\mathbf{A}\left(\left[\mathrm{CuCl}_{4}\right]^{2-}\right)$	$\mathbf{(1)}$		
	\boldsymbol{B} is not correct because this complex is octahedral with a bond angle of 90°			
\boldsymbol{C} is not correct because this complex is linear with a bond angle of 180°				
\boldsymbol{D} is not correct because this complex is square planar with a bond angle of 90°			$)$ Computer	
:---				

| Question
 Number | Answer | Mark |
| :--- | :--- | :---: | :---: |
| $\mathbf{1 0}$ | The only correct answer is $\mathbf{B}\left(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\right)$ | (1) |
| | \boldsymbol{A} is not correct because VO^{2+} is blue | Computer |
| | \boldsymbol{C} is not correct because $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is blue | |
| D is not correct because $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is blue | | |

Question Number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is $\mathbf{D}\left(2 \mathrm{Cr}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}_{2}+4 \mathrm{KOH} \rightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+8 \mathrm{H}_{2} \mathrm{O}\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is not correct because FeCl_{2} forms a green solution	Computer
	\boldsymbol{B} is not correct because this is not a redox reaction	
\boldsymbol{C} is not correct because this is not a redox reaction		

Question Number	Answer	Mark
12	The only correct answer is $\mathbf{C}\left(\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right)$ \boldsymbol{A} is not correct because this is the ionic equation describing the deprotonation when ammonia is not in excess \boldsymbol{B} is not correct because four water ligands are exchanged by ammine ligands when ammonia is in excess \boldsymbol{D} is not correct because four water ligands are exchanged by ammine ligands when ammonia is in excess	(1) Computer

Question Number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is A $\left(\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]\right)$	(1)
	\boldsymbol{B} is not correct because $\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$ is a soluble complex ion	
\boldsymbol{C} is not correct because $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is a soluble complex ion		
D is not correct because $\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}$ is a soluble complex ion	Computer	

Question Number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is $\mathbf{C}(+5 \rightarrow+4 \rightarrow+5)$	(1)
	\boldsymbol{A} is not correct because the oxidation state in $V_{2} O_{5}$ is +5 not +2	Computer
	\boldsymbol{B} is not correct because the oxidation state in $V_{2} O_{5}$ is +5 not +2	
\boldsymbol{D} is not correct because the vanadium cannot be oxidised from +5 to +6		

Question Number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is C (14)	$\mathbf{(1)}$
	\boldsymbol{A} is not correct because each carbon contributes one electron from a p-orbital	
	\boldsymbol{B} is not correct because each carbon contributes one electron from a p-orbital	
\boldsymbol{D} is not correct because each carbon contributes one electron from a p-orbital		

Question Number	Answer	Mark
16	The only correct answer is \mathbf{C} (a lone pair of electrons on oxygen in phenol is delocalised into the ring) \boldsymbol{A} is not correct because the polarity of the $O-H$ bond does not increase the electron density of the benzene ring \boldsymbol{B} is not correct because the electronegativity of the oxygen atom does not increase the electron density of the benzene ring \boldsymbol{D} is not correct because there is a greater electron density in the ring in phenol than in benzene	(1) Computer

Question Number	Answer	Mark
$\mathbf{1 7}$	The only correct answer is $\mathbf{B}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}]{\longrightarrow}\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is not correct because the reduction of a nitrile forms a primary amine	
\boldsymbol{C} is not correct because the products would be a tertiary amine and a quaternary ammonium salt		
\boldsymbol{D} is not correct because the alkaline hydrolysis of this amide forms a primary amine		

| Question | | Mark |
| :--- | :--- | :---: | :---: |
| $\mathbf{N u m b e r ~}$ | The only correct answer is \mathbf{D} (| |
| \mathbf{A} is not correct because this is not an azo dye | (1) | Computer |
| | \boldsymbol{B} is not correct because this is not an azo dye | |
| C is not correct because this azo dye could only form if the reagents were not in excess | | |

Question Number	Answer	Mark
19	The only correct answer is B (\boldsymbol{A} is not correct because this amino acid contains one acidic group and one basic group \boldsymbol{C} is not correct because this amino acid contains one acidic group and two basic groups D is not correct because this amino acid contains one acidic group and two basic groups	(1) Computer

| Question
 Number | The only correct answer is \mathbf{A} |
| :--- | :--- | :--- |
| $\mathbf{2 0}$ | \boldsymbol{B} is not correct because these reagents would lead to the formation of compound \boldsymbol{B} |
| \boldsymbol{C} is not correct because these reagents would lead to the formation of compound \boldsymbol{B} | |
| | \boldsymbol{D} is not correct because these reagents would lead to the formation of compound \boldsymbol{B} |

Section B

Question Number	Answer	Additional Guidance	Mark
21(a)	An explanation that makes reference to the following points: - $\left(\mathrm{Hg}^{+}\right.$is $\left.[\mathrm{Xe}] 4 \mathrm{f}^{14}\right) 5 \mathrm{~d}^{10} 6 \mathrm{~s}^{1}$ and $\left(\mathrm{Hg}^{2+}\right.$ is $\left.[\mathrm{Xe}] 4 \mathrm{f}^{14}\right) 5 \mathrm{~d}^{10}\left(6 \mathrm{~s}^{0}\right)$ - (d-block element as last) electron goes into a (5)d-orbital(s) (when the electronic configuration is written according to the Aufbau principle) - (not transition element as) Hg^{+}and $\mathrm{Hg}^{2+} /$ (stable) ions do not have incompletely filled (5)d-orbital(s)	Accept use of d-subshell for d-orbital(s) Allow use of d-shell for d-subshell Penalise use of just d-block for d-shell once only Penalise use of $3 \mathrm{~d} / 4 \mathrm{~d}$ for 5 d once only Allow Hg loses (only) its $\mathbf{6 s}$ electrons (when forming ions/compounds) Do not award answer in terms of the electronic configuration of an ion of mercury Allow Hg^{+}and $\mathrm{Hg}^{2+} /($ stable) ions have completely full (5)d-orbital(s) Ignore any reference to d-d transitions / other transition element properties Do not award answer in terms of the electronic configuration of the element / an Hg atom	(3) Expert

Question Number	Answer	Additional Guidance	Mark
21(b)(ii)	An answer that makes reference to the following points: - ionic half-equation for oxidation of mercury - ionic half-equation for reduction of nitrate	Allow multiples and \rightleftharpoons for \rightarrow Ignore state symbols, even if incorrect Examples of ionic half-equations: $\begin{equation*} \mathrm{Hg} \rightarrow \mathrm{Hg}^{2+}+2 \mathrm{e}^{(-)} \tag{1} \end{equation*}$ Allow $\mathrm{Hg}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Hg}^{2+}$ Do not award half-equation including $\mathrm{HNO}_{3} / \mathrm{NO}_{3}{ }^{-}$ $4 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+3 \mathrm{e}^{(-)} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$ Allow $3 \mathrm{H}^{+}+\mathrm{HNO}_{3}+3 \mathrm{e}^{(-)} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$ Allow $4 \mathrm{HNO}_{3}+3 \mathrm{e}^{(-)} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{NO}_{3}^{-}$	(2) Expert

Question Number	Answer	Additional Guidance	Mark
21(b)(iii)	An answer that makes reference to the following point:	Example of completed equation:	(1)
	\bullet balanced equation	$\underline{\mathbf{3} H g(1)+\underline{\mathbf{8}} \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \underline{\mathbf{3} H g}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\underline{\mathbf{2}} \mathrm{NO}(\mathrm{g})+\underline{\mathbf{4}} \mathrm{H}_{2} \mathrm{O}(1)}$	Clerical
		Allow multiples	

Question Number	Answer		Additional Guidance	Mark
21(c)(i)	An answer that makes reference to the following point: - correct species - balanced equation	(1) (1)	Example of completed equation: $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{Hg}(\mathrm{CNO})_{2}+2 \mathrm{CH}_{3} \mathrm{CHO}+5 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols even if incorrect Do not award molecular formulae eg $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ for $\mathrm{CH}_{3} \mathrm{CHO}$ Do not award $\mathrm{CH}_{3} \mathrm{COH}$ for $\mathrm{CH}_{3} \mathrm{CHO}$ Allow multiples No TE on M1 except on correct molecular formulae and on $\mathrm{CH}_{3} \mathrm{COH}$	(2) Graduate

Question Number	Answer		Additional Guidance	Mark
21(c)(ii)			Correct answer with some working scores (3)	(3)
			Ignore SF except 1SF throughout	Expert
			Example of calculation:	
	- moles of $\mathrm{Hg}(\mathrm{CNO})_{2}$	(1)	$\mathrm{n}=\frac{1.00}{284.6}=0.0035137 / 3.5137 \times 10^{-3}$	
	- moles of gas produced	(1)	$\begin{aligned} & \mathrm{n}=0.0035137 \times 2=0.0070274 / 7.0274 \times 10^{-3} \\ & \text { TE on M1 } \end{aligned}$	
	- volume of gas produced	(1)	$\begin{aligned} & \mathrm{v}=0.0070274 \times 24000=168.66\left(\mathrm{~cm}^{3}\right) \\ & \text { Accept } 0.16866 \mathbf{d m}^{3} \\ & \mathrm{TE} \text { on M2 } \end{aligned}$	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 1 (d) (i) ~}$	An answer that makes reference to the following point:	Allow KCl for Cl^{-}throughout	(1)
	\bullet (to provide a) constant concentration (of Cl^{-})	Allow to keep the solution $/ \mathrm{Cl}^{-}$saturated	Expert
		Ignore just to provide Cl^{-} Ignore stated concentrations Do not award salt bridge $/$to complete the circuit Do not award catalyst	

Question Number	Answer	Additional Guidance	Mark
21(d)(ii)	An answer that makes reference to the following point:		(1)
	- $(0.24-0.37=)-0.13(\mathrm{~V})$	Ignore working, even if incorrect	Expert

Question Number	Answer	Additional Guidance	Mark
21(d)(iii)	An answer that makes reference to the following point: - $\mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{Sn} \rightarrow 2 \mathrm{Hg}+\mathrm{Sn}^{2+}+2 \mathrm{Cl}^{-}$	Allow $\mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{Sn} \rightarrow 2 \mathrm{Hg}+\mathrm{SnCl}_{2}$ Allow multiples Allow \rightleftharpoons for \rightarrow Ignore state symbols even if incorrect Ignore half-equations even if incorrect Ignore use of cell diagrams Do not award uncancelled electrons Do not award $2 \mathrm{Hg}^{+}\left(+2 \mathrm{Cl}^{-}\right)$for $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ If answer to (d)(ii) is $\mathbf{+ 0 . 6 1}(\mathrm{V}) / \boldsymbol{+ 0 . 3 7}(\mathrm{V}) /$ greater than $+0.24(\mathrm{~V})$, equation must be reversed: $2 \mathrm{Hg}+\mathrm{Sn}^{2+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{Sn}$ OR $2 \mathrm{Hg}+\mathrm{SnCl}_{2} \rightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{Sn}$	(1) Expert

Question Number	Answer	Additional Guidance	Mark
21(d)(v)	An answer that makes reference to any one of the following points: - (calomel electrode) does not require a (separate) salt bridge OR (calomel electrode) does not require a continuous supply of hydrogen / gas OR platinum/Pt (of hydrogen electrode is) easily poisoned OR difficult to ensure hydrogen electrode is at equilibrium	Ignore calomel electrode is quicker to use / easier to set up / done in the same container / more portable Accept does not require a hydrogen / gas generator Ignore just does not require hydrogen / gas Ignore any reference to pressure Ignore hydrogen is flammable / explosive / difficult to store Ignore (calomel electrode is) safer Ignore platinum is expensive Ignore (calomel electrode) is cheaper Allow (calomel electrode) reaches equilibrium sooner Allow (calomel electrode gives) more stable (reading) Ignore (calomel electrode is) more accurate Ignore calomel electrode potential is more positive	(1) Expert

Question Number	Answer		Additional Guidance	Mark
22	An answer that makes reference to the following points:		Correct answer to 2SF or 3SF with some working scores (6)	(6)
			Ignore SF except 1SF	Expert
			Example of calculation:	
	- moles of FeSO_{4}	(1)	$\mathrm{n}=0.0500 \times \frac{25.95}{1000}=0.0012975 / 1.2975 \times 10^{-3}$	
	- moles of excess $\mathrm{MnO}_{4}{ }^{-}$	(1)	$\mathrm{n}=0.0012975 \div 5=0.0002595 / 2.595 \times 10^{-4}$ TE on moles of FeSO_{4}	
	- initial moles of MnO_{4}^{-}		$\mathrm{n}=0.0100 \times \frac{50.0}{1000}=0.0005 / 5 \times 10^{-4}(\text { Allow } 1 \mathrm{SF})$	
	and moles of MnO_{4}^{-}reacted	(1)	and $\mathrm{n}=0.0005-0.0002595=0.0002405 / 2.405 \times 10^{-4}$	
			TE on moles of excess $\mathrm{MnO}_{4}{ }^{-}$provided answer is positive	
	- moles of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	(1)	$\begin{aligned} & \mathrm{n}=0.0002405 \times 2.5=0.00060125 / 6.0125 \times 10^{-4} \\ & \mathrm{TE} \text { on moles of } \mathrm{MnO}_{4}^{-} \text {reacted } \end{aligned}$	
	- mass of $\mathrm{CaC}_{2} \mathrm{O}_{4}$	(1)	$\text { mass }=0.00060125 \times 128.1=0.077020(\mathrm{~g})$ TE on moles of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	
	- percentage by mass of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ and answer to 2 SF or 3 SF	(1)	$\begin{aligned} & \% \text { mass }=\frac{0.077020}{11.4} \times 100=0.67562(\%) \\ & =0.68 / 0.676(\%) \end{aligned}$ TE on mass of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ provided positive value to $2 \mathrm{SF} / 3 \mathrm{SF}$ and $<100 \%$ Allow use of 128 for M_{r} of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ giving 0.675 (\%)	

(Total for Question 22 = 6 marks)

Indicative points:

- IP1: thermochemical data calculation
(enthalpy of hydrogenation of 1,3,5-cyclohexatriene / benzene is) expected to be $-360\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
- IP2: thermochemical data comparison
(enthalpy of hydrogenation is) less exothermic / less negative than expected (for 1,3,5-cyclohexatriene)

less exothermic / more stable by $152\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores IP1 and IP2

- IP3: X-ray diffraction data
(carbon-carbon) bond lengths in benzene are equal
Ignore any reference to bond strength / bond angle in IP3 and IP4
- IP4: X-ray diffraction data (carbon-carbon) bond length in benzene is longer than (localised) $\mathrm{C}=\mathrm{C}$ (in cyclohexene)
- IP5: Bromination data
(product for benzene is formed by electrophilic) substitution
- IP6: Bromination data
(benzene π-bonds less reactive than localised π-bonds and) requires $\left(\mathrm{FeBr}_{3}\right)$ catalyst (and heat)

Allow (enthalpy of hydrogenation is) expected to be three times the value for cyclohexene
Allow (enthalpy of hydrogenation is) different by $152\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Accept reverse argument
Ignore higher/lower for less exothermic
Ignore benzene more exothermic than cyclohexene
Ignore just benzene more stable than expected
Do not award enthalpy required/needed

Allow (carbon-carbon) bond lengths are not different Allow cyclohexene (carbon-carbon) bond lengths are different

Accept (carbon-carbon) bond length is in between $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ (in cyclohexene)
Allow (carbon-carbon) bond length is shorter than $\mathrm{C}-\mathrm{C}$ (in cyclohexene)

Allow (benzene) does not react by addition
Allow cyclohexene/localised π-bonds react by addition Ignore any equations / mechanisms
Do not award nucleophilic (substitution / addition)
Accept cyclohexene does not require a catalyst
Allow halogen carrier for catalyst
Ignore just benzene does not decolourise bromine water Do not award Fe catalyst

Question Number	Answer	Additional Guidance	Mark
24(a)(i)	An answer that makes reference to the following point:	Allow capital letters and spaces	(1)
	- prop-2-enamide / 2-propenamide	Ignore omission of hyphen Allow propenamide Allow 'ene' for 'en' Allow propyl for prop	
		Graduate Do not award propan for prop Do not award N- prefix Do not award cis/trans/E/Z- prefix	

Question Number	Answer		Additional Guidance	Mark
24(a)(ii)	An explanation that makes reference to the following points: - (PAM can form many) hydrogen bonds with water - H-bonds (with water) can form at NH_{2} and ($\mathrm{C}=$) O - diagram of (at least one) hydrogen bond between a water molecule and any amide group	(1) (1) (1)	Allow M1 from a labelled diagram Ignore PAM reacts with water / acts as a base / accepts a proton from water / forms $\mathrm{RNH}_{3}{ }^{+}$ M2 can be awarded from a diagram diagram must include: H -bond to lone pair on O or N and $\delta+\mathrm{H}$ atom Ignore bond angle Do not award H-bond shown as coordinate bond / solid line (ie covalent bond) Example of diagram scoring (3): Allow H -bond between lone pair on N of NH_{2} and $\delta+\mathrm{H}$ of water	(3) Expert

Question Number	Answer	Additional Guidance	Mark
24(a)(iii)	An explanation that makes reference to the following points: - carboxylate / COO^{-}(above pH 8) - repulsion between negative charges (above pH 8)	Allow carboxylic acid/COOH/OH groups are deprotonated / donate H^{+}/ become anions Allow OH^{-}removes H atoms involved in hydrogen bonds Ignore just PAA is deprotonated / donates H^{+}/ becomes anion Ignore just salt is formed Do not award zwitterion is formed Allow (COO^{-}) cannot form (intramolecular) hydrogen bonds Allow (all) hydrogen bonds break Ignore hydrogen bonds weaken Ignore fewer hydrogen bonds Ignore any reference to denaturation Ignore any reference to intermolecular hydrogen bonds	(2) Expert

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 4 (b) (i)}$ | An answer that makes reference to the following
 point: | Allow any combination of skeletal, structural or displayed
 formulae |
| (1) | | |
| | estructure of vinylpyrrolidone monomer | |

Question Number	Answer		Additional Guidance	Mark
24(b)(ii)	An answer that makes reference to the following points: - molar mass of vinylpyrrolidone monomer / PVP repeat unit - number of monomers per polymer and answer to nearest whole number	(1) (1)	Correct answer with some working scores (2) Example of calculation: $M\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}\right)=111.0 / 111\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ TE on (b)(i) if molar mass is not $111.0 / 111$ $\begin{aligned} & \text { number }=90000 \div 111.0=810.81=811 \\ & \text { TE on M1 } \end{aligned}$	(2) Expert

Question Number	Answer		Additional Guidance	Mark
24(c)(i)	An answer that makes reference to the following points: - (polymer is a very) large molecule OR (polymer is formed from) large number of / many monomers - (condensation as) splitting off of a (small) molecule	(1) (1)	Allow long-chain (molecule) Allow macromolecule Allow repeating for many Ignore 2 or more / several / different for many Ignore (formed by) addition Allow with loss/elimination of $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl}$ Ignore forms byproduct	(2) Expert

Question Number	Answer	Additional Guidance	Mark
24(c)(iii)	An answer that makes reference to the following points: - amide linkage (within polymer chain) - two repeat units	Allow any combination of skeletal, structural or displayed formulae Allow -NHCO- / -CONH- / -HNCO- / -OCNH- Ignore omission of square brackets Ignore n Examples of two repeat units: $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}-$ $-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}-$	(2) Expert

(Total for Question 24 = 18 marks)
Total for Section B=50 marks

Section C

Question Number	Answer	Additional Guidance	Mark
25(a)	An answer that makes reference to the following points: - ester - (primary) amine and arene/benzene/phenyl OR phenylamine	Ignore any structures / formulae Ignore carbonyl Do not award ketone / aldehyde / carboxylic acid Do not award ether Allow amino Allow aryl Ignore alkyl/alkane Do not award alkene Do not award phenol Allow aniline Allow aromatic amine	(2) Graduate

Question Number	Answer	Additional Guidance	Mark
25(b)(i)	An answer that makes reference to the following points: - molecular formulae of procaine and HCl - molecular formula of procaine monohydrochloride	Ignore non-molecular formulae $\begin{equation*} \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{HCl} \tag{1} \end{equation*}$ Allow elements in any order $\begin{equation*} \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Cl}^{(-)} \mathrm{N}_{2}{ }^{(+)} \mathrm{O}_{2} \tag{1} \end{equation*}$ Allow elements in any order TE on molecular formula of procaine Ignore position of charges Do not award separate $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2}{ }^{+} \mathrm{O}_{2}$ and Cl^{-}ions Do not award any additional product(s) Example of equation: $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{HCl} \rightarrow \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2} \text { scores (2) }$	(2) Graduate

Question Number	Answer	Additional Guidance	Mark
25(b)(ii)	An explanation that makes reference to the following points: - identification of tertiary amine nitrogen and effect of ethyl groups OR benzene ring EITHER ethyl / alkyl (groups) are electron donating OR lone pair (on N of NH_{2} partially) delocalised into (aromatic) π-bond(s) - second effect	Ignore just comparison of electron density on N atoms Ignore just comparison of ability of (N) lone pairs to accept H^{+} Accept any unambiguous identification Accept ethyl / alkyl has positive inductive effect Allow ethyl / alkyl are electron pushing / electron releasing Allow methyl / R / attached groups for ethyl / alkyl Accept non-bonding pair for lone pair Allow electron pair for lone pair Allow overlaps with / interacts with / released into / drawn into for delocalised into Allow p-orbitals / ring for (aromatic) π-bond(s) Ignore just benzene for (aromatic) π-bond(s) Ignore just ring is electron withdrawing (with no mention of electron pair) If no other mark awarded, tertiary / aliphatic amine is more basic OR aromatic / primary amine is less basic scores (1)	(2) Expert

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 5 (c)}$	An answer that makes reference to the following point:	Allow any combination of skeletal, structural or displayed formulae Example of structure:	(1)

Question Number	Answer	Additional Guidance	Mark
25(d)(i)	An answer that makes reference to the following points: - equation for formation of nitronium ion - curly arrow from within hexagon to anywhere on $\mathrm{NO}_{2}{ }^{+}$ - structure of intermediate ion - curly arrow from $\mathrm{C}-\mathrm{H}$ bond to within ring and correct product and H^{+}	Ignore omission or incorrect placement of methyl groups in M2 and M3 $\begin{equation*} \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ OR $\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ OR $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}+\mathrm{HSO}_{4}^{-} \text {and } \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$ TE on electrophile from M1 provided positively charged Do not award lone pair on N of $\mathrm{NO}_{2}{ }^{+}$ Allow any part of gap in 'horseshoe' facing tetrahedral carbon and covering at least three carbons with some part of positive sign within 'horseshoe'. 'Horseshoe' may be dashed TE on electrophile from M2 Do not award $\mathrm{NO}_{2}-\mathrm{C}$ connectivity Do not award dashed $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{N}$ bonds unless 3D structure	(4) Expert

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 5 (d) (i i i)}$	An answer that makes reference to the following point:		(1)
	\bullet tin and (concentrated) hydrochloric acid	Accept Sn and $\mathrm{HCl}((\mathrm{aq}))$ Ignore heat $/$ reflux Ignore NaOH in second step Do not award NaOH with Sn and HCl in the same step Do not award any reference to catalyst	Graduate

Question	Answer	Additional Guidance	Mark	
Number	An answer that makes reference to the following point:	Ignore non-skeletal formulae Ignore bond angles and bond lengths	Graduate	
		skeletal formula of 2-chloroethanoyl chloride		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 5 (d) (v)}$	An answer that makes reference to the following point:		(1)
	\bullet nucleophilic substitution	Allow $\mathrm{S}_{\mathrm{N}} 2 / \mathrm{S}_{\mathrm{N}} 1$	Clerical
		Do not award any other answer	

Question Number	Answer	Additional Guidance	Mark	
25(e)	An answer that makes reference to the following point:	(1)	Graduate	articaine

Question Number	Answer	Additional Guidance	Mark
25(f)	An answer that makes reference to the following points:	Example of calculation:	(3)
	- number of half-lives in 4 hours	$\text { half-lives }=\frac{(4 \times 60)}{20}=12$	Expert
	- mass of articaine remaining in mg	$\text { mass }=100 \times 0.5^{12}=0.024414(\mathrm{mg})$ TE on M1 Ignore SF except 1 SF	
	- conversion of mg to $\mu \mathrm{g}$	$\text { mass }=0.024414 \times 1000=24.414(\mu \mathrm{~g})$ TE on M1 and M2	

(Total for Question $25=20$ marks)
Total for Section C=20 marks
Total for Paper $=90$ marks

