

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH15) Paper 01 Unit 5: Transition Metals and Organic Nitrogen

Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023

Question Paper Log Number: P71943A Publications Code: WCH15_01_2306_MS All the material in this publication is copyright

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
1	The only correct answer is D (Pt(s) $ V^{2+}(aq), V^{3+}(aq) $ Cu ²⁺ (aq) Cu(s))	(1)
	A is not correct because the $V^{3+}(aq)/V^{2+}(aq)$ half-cell should have a platinum electrode and should show oxidation and the $Cu^{2+}(aq)/Cu(s)$ half-cell should show reduction	Computer
	B is not correct because the $V^{3+}(aq)/V^{2+}(aq)$ half-cell should have a platinum electrode	
	C is not correct because the $V^{3+}(aq)/V^{2+}(aq)$ half-cell should show oxidation and the $Cu^{2+}(aq)/Cu(s)$ half-cell should show reduction	

Question Number	Answer	Mark
2	The only correct answer is D (Mg + $2Ce^{4+} \rightarrow Mg^{2+} + 2Ce^{3+}$)	(1)
	A is not correct because Ce is a weaker reducing agent than Mg	Computer
	B is not correct because Ce^{3+} is a weaker reducing agent than Ce	
	C is not correct because Mn^{2+} is a weaker reducing agent than Mn	

Question Number	Answer	Mark
3	The only correct answer is \mathbf{D} (ΔS^{e}_{total})	(1)
	$m{A}$ is not correct because $E^{m{ heta}}_{cell}$ is directly proportional to lnK_c	Computer
	B is not correct because E^{θ}_{cell} is directly proportional to $\Delta S^{\theta}_{total}$ and not ΔH^{θ}	
	C is not correct because E°_{cell} is directly proportional to ΔS°_{total} and not $\Delta S^{\circ}_{system}$	

Question Number	Answer	Mark
4	The only correct answer is C (the reactants are thermodynamically unstable with respect to the products)	(1)
	$oldsymbol{A}$ is not correct because the reaction is thermodynamically feasible so will occur under certain conditions	Computer
	$m{B}$ is not correct because the $E^{m{arphi}}_{cell}$ value is a thermodynamic and not a kinetic property	
	D is not correct because the reaction may be kinetically inert and the conditions may be non-standard	

Question Number	Answer	Mark
5	The only correct answer is A ($H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$)	(1)
	B is not correct because hydrogen is consumed and not produced in a hydrogen-oxygen fuel cell	Computer
	C is not correct because oxygen is reduced at the positive electrode in a hydrogen-oxygen fuel cell	
	D is not correct because oxygen is consumed and not produced in a hydrogen-oxygen fuel cell	

Question Number	Answer	Mark
6	The only correct answer is D (Cu [Ar]3d ¹⁰ 4s ¹)	(1)
	A is not correct because the 4s electrons are removed before the 3d electrons	Computer
	B is not correct because the electronic configuration of chromium is $[Ar]3d^54s^1$	
	C is not correct because the 4s electrons are removed before the 3d electrons	

Question Number	Answer	Mark
7	The only correct answer is C (six)	(1)
	A is not correct because it only takes into account water ligands	Computer
	B is not correct because it only takes into account ethanoate ions	
	$m{D}$ is not correct because the coordination numbers of the two chromiums have been added together	

Question Number	Answer	Mark
8	The only correct answer is A $([Fe(CN)_6]^{4-})$	(1)
	B is not correct because $C_2O_4^{2-}$ is a bidentate ligand	Computer
	C is not correct because EDTA ⁴⁻ is a hexadentate ligand	
	D is not correct because NH ₂ CH ₂ CH ₂ NH ₂ is a bidentate ligand	

Question Number	Answer	Mark
9	The only correct answer is A ([CuCl ₄] ²⁻)	(1)
	B is not correct because this complex is octahedral with a bond angle of 90 $^{\circ}$	Computer
	$\emph{\textbf{C}}$ is not correct because this complex is linear with a bond angle of 180 $^{\circ}$	
	$m{D}$ is not correct because this complex is square planar with a bond angle of 90 $^{\circ}$	

Question Number	Answer	Mark
10	The only correct answer is \mathbf{B} ($[\mathrm{Co}(\mathrm{H}_2\mathrm{O})_6]^{2+}$)	(1)
	A is not correct because VO^{2+} is blue	Computer
	C is not correct because $[Cr(H_2O)_6]^{2+}$ is blue	
	D is not correct because $[Cu(H_2O)_6]^{2+}$ is blue	

Question Number	Answer	Mark
11	The only correct answer is D $(2Cr(OH)_3 + 3H_2O_2 + 4KOH \rightarrow 2K_2CrO_4 + 8H_2O)$	(1)
	A is not correct because FeCl ₂ forms a green solution	Computer
	B is not correct because this is not a redox reaction	
	C is not correct because this is not a redox reaction	

Question Number	Answer	Mark
12	The only correct answer is $C([Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O)$	(1)
	$oldsymbol{A}$ is not correct because this is the ionic equation describing the deprotonation when ammonia is not in excess	Computer
	B is not correct because four water ligands are exchanged by ammine ligands when ammonia is in excess	
	$m{D}$ is not correct because four water ligands are exchanged by ammine ligands when ammonia is in excess	

Question Number	Answer	Mark
13	The only correct answer is A $([Zn(OH)_4]^{2-} + 2H_3O^+ \rightarrow [Zn(H_2O)_4(OH)_2])$	
	B is not correct because $[Zn(OH)_4]^{2-}$ is a soluble complex ion	
	C is not correct because $[Cr(H_2O)_6]^{3+}$ is a soluble complex ion	
	D is not correct because $[Cr(OH)_6]^{3-}$ is a soluble complex ion	

Question Number	Answer	Mark
14	The only correct answer is C $(+5 \rightarrow +4 \rightarrow +5)$	(1)
	A is not correct because the oxidation state in V_2O_5 is +5 not +2	Computer
	B is not correct because the oxidation state in V_2O_5 is +5 not +2	
	$m{D}$ is not correct because the vanadium cannot be oxidised from +5 to +6	

Question Number	Answer	Mark
15	The only correct answer is C (14)	(1)
	A is not correct because each carbon contributes one electron from a p-orbital B is not correct because each carbon contributes one electron from a p-orbital	Computer
	$m{D}$ is not correct because each carbon contributes one electron from a p-orbital	

Question Number	Answer	Mark		
16	The only correct answer is C (a lone pair of electrons on oxygen in phenol is delocalised into the ring)			
	A is not correct because the polarity of the O-H bond does not increase the electron density of the benzene ring			
	$m{B}$ is not correct because the electronegativity of the oxygen atom does not increase the electron density of the benzene ring			
	D is not correct because there is a greater electron density in the ring in phenol than in benzene			

Question Number	Answer	Mark
17	The only correct answer is B $(C_2H_5NH_2)$	(1)
	A is not correct because the reduction of a nitrile forms a primary amine	
	C is not correct because the products would be a tertiary amine and a quaternary ammonium salt	
	$m{D}$ is not correct because the alkaline hydrolysis of this amide forms a primary amine	

Question Number	Answer	
18	The only correct answer is D ($\stackrel{\text{HO}}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} \stackrel{\text{OCH}_3}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} \stackrel{\text{OCH}_3}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} \stackrel{\text{OCH}_3}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} \stackrel{\text{OCH}_3}{\longrightarrow} \stackrel{\text{N}}{\longrightarrow} \text{N$	(1) Computer
	A is not correct because this is not an azo dye	
	B is not correct because this is not an azo dye	
	C is not correct because this azo dye could only form if the reagents were not in excess	

Question Number	Answer	Mark
19	The only correct answer is B $(HO \rightarrow OH)$	(1)
	NH ₂	Computer
	A is not correct because this amino acid contains one acidic group and one basic group	
	C is not correct because this amino acid contains one acidic group and two basic groups	
	D is not correct because this amino acid contains one acidic group and two basic groups	

Question Number	Answer	Mark			
20		(1)			
	The only correct answer is A (+ BrMg)	Computer			
	$m{B}$ is not correct because these reagents would lead to the formation of compound $m{B}$				
	C is not correct because these reagents would lead to the formation of compound B				
	$m{D}$ is not correct because these reagents would lead to the formation of compound $m{B}$				

Total for Section A = 20 marks

Section B

Question Number	Answer	Additional Guidance	Mark
21(a)	An explanation that makes reference to the following points:	Accept use of d-subshell for d-orbital(s) Allow use of d-shell for d-subshell Penalise use of just d-block for d-shell once only Penalise use of 3d/4d for 5d once only	(3) Expert
	• (Hg ⁺ is [Xe]4f ¹⁴) $5d^{10}6s^1$ and (Hg ²⁺ is [Xe]4f ¹⁴) $5d^{10}(6s^0)$	Allow Hg loses (only) its 6s electrons (when forming ions/compounds)	
	(d-block element as last) electron goes into a (5)d-orbital(s) (when the electronic configuration is written according to the Aufbau principle)	Do not award answer in terms of the electronic configuration of an ion of mercury	
	(not transition element as) Hg ⁺ and Hg ²⁺ /(stable) ions do not have incompletely filled (5)d-orbital(s)	Allow Hg ⁺ and Hg ²⁺ /(stable) ions have completely full (5)d-orbital(s) Ignore any reference to d-d transitions / other transition element properties Do not award answer in terms of the electronic configuration of the element / an Hg atom	

Question Number	Answer	Additional Guidance	Mark
21(b)(i)	An explanation that makes reference to the following points:	Allow oxidation numbers from annotation to the equation	(2)
	points.	Ignore any reference to electron loss/gain	Expert
	Hg/mercury oxidised and	Do not award reference to oxidation of any other element	
	from 0 (in Hg) to $+2$ (in Hg(NO ₃) ₂) (1)		
	 N/nitrogen is reduced and from +5 (in HNO₃) to +2 (in NO) 	Do not award HNO ₃ is reduced Do not award reference to reduction of any other element	
	(If no other mark awarded,	
		Hg/mercury oxidised and N/nitrogen reduced OR	
		Hg/mercury from 0 to +2 and N/nitrogen from +5 to +2 scores (1)	

Question Number	Answer		Additional Guidance	Mark
21(b)(ii)	An answer that makes reference to the following points:		Allow multiples and \rightleftharpoons for \rightarrow	(2)
			Ignore state symbols, even if incorrect	Expert
			Examples of ionic half-equations:	
	ionic half-equation for oxidation of mercury	(1)	$Hg \rightarrow Hg^{2+} + 2e^{(-)}$ Allow $Hg - 2e^{(-)} \rightarrow Hg^{2+}$ Do not award half-equation including HNO_3/NO_3^-	
	ionic half-equation for reduction of nitrate	(1)	$4H^{+} + NO_{3}^{-} + 3e^{(-)} \rightarrow NO + 2H_{2}O$ Allow $3H^{+} + HNO_{3} + 3e^{(-)} \rightarrow NO + 2H_{2}O$ Allow $4HNO_{3} + 3e^{(-)} \rightarrow NO + 2H_{2}O + 3NO_{3}^{-}$	

Question Number	Answer	Additional Guidance	Mark
21(b)(iii)	An answer that makes reference to the following point:	Example of completed equation:	(1)
	• balanced equation	$\underline{3}$ Hg(l) + $\underline{8}$ HNO ₃ (aq) → $\underline{3}$ Hg(NO ₃) ₂ (aq) + $\underline{2}$ NO(g) + $\underline{4}$ H ₂ O(l) Allow multiples	Clerical

Question Number	Answer		Additional Guidance	Mark
21(c)(i)	An answer that makes reference to the following point:		Example of completed equation:	(2)
	Politic.		$Hg(NO_3)_2 + 3C_2H_5OH \rightarrow Hg(CNO)_2 + 2CH_3CHO + 5H_2O$	Graduate
			Ignore state symbols even if incorrect	
	• correct species	(1)	Do not award molecular formulae eg C ₂ H ₄ O for CH ₃ CHO Do not award CH ₃ COH for CH ₃ CHO	
	balanced equation	(1)	Allow multiples No TE on M1 except on correct molecular formulae and on CH ₃ COH	

Question Number	Answer		Additional Guidance	Mark
21(c)(ii)		Correct a	answer with some working scores (3)	(3)
		Ignore S	F except 1SF throughout	Expert
		Example	e of calculation:	
	• moles of Hg(CNO) ₂	(1) $n = \frac{1.00}{284.6}$	$= 0.0035137 / 3.5137 \times 10^{-3}$	
	 moles of gas produced 	(1) $n = 0.000$ TE on M	$35137 \times 2 = 0.0070274 / 7.0274 \times 10^{-3}$	
	• volume of gas produced		$70274 \times 24000 = 168.66 \text{ (cm}^3\text{)}$ 0.16866 dm^3	

Question Number	Answer	Additional Guidance	Mark
21(d)(i)	An answer that makes reference to the following point:	Allow KCl for Cl ⁻ throughout	(1)
	• (to provide a) constant concentration (of Cl ⁻)	Allow to keep the solution / Cl ⁻ saturated	Expert
		Allow to replace Cl ⁻	
		Ignore just to provide Cl ⁻ Ignore stated concentrations	
		Do not award salt bridge / to complete the circuit Do not award catalyst	

Question Number	Answer	Additional Guidance	Mark
21(d)(ii)	An answer that makes reference to the following point:		(1)
	• $(0.24 - 0.37 =) -0.13 (V)$	Ignore working, even if incorrect	Expert

Question Number	Answer	Additional Guidance	Mark
21(d)(iii)	An answer that makes reference to the following point:		(1)
	• $Hg_2Cl_2 + Sn \rightarrow 2Hg + Sn^{2+} + 2Cl^-$	Allow $Hg_2Cl_2 + Sn \rightarrow 2Hg + SnCl_2$ Allow multiples Allow \rightleftharpoons for \rightarrow	Expert
		Ignore state symbols even if incorrect Ignore half-equations even if incorrect Ignore use of cell diagrams	
		Do not award uncancelled electrons Do not award 2Hg ⁺ (+ 2Cl ⁻) for Hg ₂ Cl ₂	
		If answer to (d)(ii) is +0.61 (V) / +0.37 (V) / greater than +0.24 (V), equation must be reversed: $2Hg + Sn^{2+} + 2Cl^{-} \rightarrow Hg_2Cl_2 + Sn$ OR	
		$2Hg + SnCl_2 \rightarrow Hg_2Cl_2 + Sn$	

Question Number	Answer	Additional Guidance	Mark
Number 21(d)(iv)	An answer that makes reference to the following points: • hydrogen (gas)/H ₂ ((g)) and	Example of completed diagram: H ₂ (g) 100 kPa Salt bridge KNO ₃ (aq) Pt(s) 1.0 mol dm ⁻³ HCl(aq)	(3) Graduate
	100 kPa (1) • platinum (solid)/Pt((s)) and 298 K / 25°C (1) • hydrochloric acid/HCl((aq)) and 1 mol dm ⁻³ (1)	Accept platinum black for platinum Ignore porous Ignore omission of state symbol 298 K / 25°C may be shown anywhere Allow H ⁺ / H ₃ O ⁺ for hydrochloric acid	

Question Number	Answer	Additional Guidance	Mark
21(d)(v)	An answer that makes reference to any one of the following points:		(1)
	• (calomel electrode) does not require a (separate) salt bridge	Ignore calomel electrode is quicker to use / easier to set up / done in the same container / more portable	Expert
	OR	portuble	
	(calomel electrode) does not require a continuous supply of hydrogen / gas	Accept does not require a hydrogen / gas generator Ignore just does not require hydrogen / gas Ignore any reference to pressure Ignore hydrogen is flammable / explosive /	
	OR	difficult to store Ignore (calomel electrode is) safer	
	platinum/Pt (of hydrogen electrode is) easily poisoned OR	Ignore platinum is expensive Ignore (calomel electrode) is cheaper	
	difficult to ensure hydrogen electrode is at equilibrium	Allow (calomel electrode) reaches equilibrium sooner Allow (calomel electrode gives) more stable (reading) Ignore (calomel electrode is) more accurate Ignore calomel electrode potential is more positive	

(Total for Question 21 = 20 marks)

Question Number	Answer		Additional Guidance	Mark
22	An answer that makes reference to the following points:		Correct answer to 2SF or 3SF with some working scores (6) Ignore SF except 1SF	(6) Expert
			Example of calculation:	
	• moles of FeSO ₄	(1)	$n = 0.0500 \times \frac{25.95}{1000} = 0.0012975 / 1.2975 \times 10^{-3}$	
	• moles of excess MnO ₄ ⁻	(1)		
	• initial moles of MnO ₄ ⁻		$n = 0.0100 \times \frac{50.0}{1000} = 0.0005 / 5 \times 10^{-4} \text{ (Allow 1 SF)}$	
	and moles of MnO ₄ ⁻ reacted	(1)	and $n = 0.0005 - 0.0002595 = 0.0002405 / 2.405 \times 10^{-4}$ TE on moles of excess MnO ₄ ⁻ provided answer is positive	
	• moles of C ₂ O ₄ ² -	(1)	$n = 0.0002405 \times 2.5 = 0.00060125 \ / \ 6.0125 \times 10^{-4}$ TE on moles of MnO ₄ ⁻ reacted	
	• mass of CaC ₂ O ₄	(1)	$mass = 0.00060125 \times 128.1 = 0.077020 \text{ (g)}$ TE on moles of $C_2O_4^{2-}$	
	• percentage by mass of CaC ₂ O ₄ and answer to 2SF or 3SF	(1)	% mass = $\frac{0.077020}{11.4} \times 100 = 0.67562$ (%) $\frac{11.4}{1.4} = 0.68 / 0.676$ (%) TE on mass of CaC ₂ O ₄ provided positive value to 2SF/3SF and < 100% Allow use of 128 for $M_{\rm r}$ of CaC ₂ O ₄ giving 0.675 (%)	

(Total for Question 22 = 6 marks)

Question Number	Answe	er	Additional Guidance	Mark
	This question assesses a student's ablogically structured answer with link reasoning.	ages and fully-sustained		(6) Expert
	structured and shows lines of reasoning.		The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark	
	Number of indicative marking	Number of marks awarded for indicative marking points	for partial structure and some linkages and lines of reasoning).	
	6 5-4	4 3	If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded, do not deduct mark(s).	
	3-2	2		
	0	0		
	The following table shows how the restructure and lines of reasoning.		Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of	
		Number of marks awarded for structure and sustained lines of reasoning	reasoning.	
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2		
	Answer is partially structured with some linkages and lines of reasoning.	1		
	Answer has no linkages between			1

Indicative points:

- **IP1:** thermochemical data calculation (enthalpy of hydrogenation of 1,3,5-cyclohexatriene / benzene is) expected to be -360 (kJ mol⁻¹)
- **IP2: thermochemical data comparison** (enthalpy of hydrogenation is) less exothermic / less negative than expected (for 1,3,5-cyclohexatriene)

less exothermic / more stable by 152 (kJ mol⁻¹) scores IP1 and IP2

• IP3: X-ray diffraction data (carbon-carbon) bond lengths in benzene are equal

Ignore any reference to bond strength / bond angle in IP3 and IP4

- **IP4: X-ray diffraction data** (carbon-carbon) bond length in benzene is longer than (localised) C=C (in cyclohexene)
- **IP5: Bromination data** (product for benzene is formed by electrophilic) substitution
- **IP6:** Bromination data (benzene π-bonds less reactive than localised π-bonds and) requires (FeBr₃) catalyst (and heat)

Allow (enthalpy of hydrogenation is) expected to be three times the value for cyclohexene Allow (enthalpy of hydrogenation is) different by 152 (kJ mol⁻¹)

Accept reverse argument
Ignore higher/lower for less exothermic
Ignore benzene more exothermic than cyclohexene
Ignore just benzene more stable than expected
Do not award enthalpy required/needed

Allow (carbon-carbon) bond lengths are not different Allow cyclohexene (carbon-carbon) bond lengths are different

Accept (carbon-carbon) bond length is in between C=C and C-C (in cyclohexene)
Allow (carbon-carbon) bond length is shorter than C-C (in cyclohexene)

Allow (benzene) does not react by addition Allow cyclohexene/localised π -bonds react by addition Ignore any equations / mechanisms Do not award nucleophilic (substitution / addition)

Accept cyclohexene does not require a catalyst Allow halogen carrier for catalyst Ignore just benzene does not decolourise bromine water Do not award Fe catalyst

Question Number	Answer	Additional Guidance	Mark
24(a)(i)	An answer that makes reference to the following point:	Allow capital letters and spaces	(1)
		Ignore omission of hyphen	Graduate
	• prop-2-enamide / 2-propenamide	Allow propenamide Allow 'ene' for 'en'	
		Allow propyl for prop	
		Do not award propan for prop	
		Do not award N- prefix	
		Do not award cis/trans/E/Z- prefix	

Question Number	Answer		Additional Guidance	Mark
24(a)(ii)	An explanation that makes reference to the following points:			(3)
	• (PAM can form many) hydrogen bonds with water	(1)	Allow M1 from a labelled diagram	Expert
			Ignore PAM reacts with water / acts as a base / accepts a proton from water / forms RNH ₃ ⁺	
	• H-bonds (with water) can form at NH ₂ and (C=)O	(1)	M2 can be awarded from a diagram	
	 diagram of (at least one) hydrogen bond between a water molecule and any amide group 	(1)	diagram must include: H-bond to lone pair on O or N and δ+H atom	
			Ignore bond angle	
			Do not award H-bond shown as coordinate bond / solid line (ie covalent bond)	
			Example of diagram scoring (3):	
			H Ο δ+ H Ν δ+ H Ν Ο Η	
			Allow H-bond between lone pair on N of NH $_2$ and δ +H of water	

Question Number	Answer		Additional Guidance	Mark
24(a)(iii)	An explanation that makes reference to the following points:			(2)
		(1)	Allow carboxylic acid/COOH/OH groups are deprotonated /	Expert
	• carboxylate / COO ⁻ (above pH 8)	(1)	donate H ⁺ / become anions	
			Allow OH ⁻ removes H atoms involved in hydrogen bonds	
			Ignore just PAA is deprotonated / donates H ⁺ / becomes anion	
			Ignore just salt is formed	
			Do not award zwitterion is formed	
	• repulsion between negative charges (above pH 8)	(1)	Allow (COO ⁻) cannot form (intramolecular) hydrogen bonds Allow (all) hydrogen bonds break	
			Ignore hydrogen bonds weaken	
			Ignore fewer hydrogen bonds	
			Ignore any reference to denaturation	
			Ignore any reference to intermolecular hydrogen bonds	

Question Number	Answer	Additional Guidance	Mark
24(b)(i)	An answer that makes reference to the following	Allow any combination of skeletal, structural or displayed	(1)
	point:	formulae	
			Expert
	 structure of vinylpyrrolidone monomer 	Examples of structure:	
		C=C H	

Question Number	Answer	Additional Guidance	Mark
24(b)(ii)	An answer that makes reference to the following points:	Correct answer with some working scores (2)	(2)
		Example of calculation:	Expert
	 molar mass of vinylpyrrolidone monomer / PVP repeat unit (1) 	$M(C_6H_9NO) = 111.0 / 111 \text{ (g mol}^{-1})$ TE on (b)(i) if molar mass is not 111.0 / 111	
	 number of monomers per polymer and answer to nearest whole number (1)	number = 90000 ÷ 111.0 = 810.81 = 811 TE on M1	

Question Number	Answer	Additional Guidance	Mark
24(b)(iii)	An answer that makes reference to the following points:	Correct answer with some working scores (3)	(3)
	• mass of PVP per tablet (1	Example of calculation: $mass = \underline{0.740} \times 4.0 = 0.0296 \text{ (g)}$	Expert
		100 Accept 29.6 (mg) Ignore SF except 1 SF	
	• number of moles of PVP polymer (1	moles = $0.0296 \div 90000 = 3.2889 \times 10^{-7}$ Allow 3.2889×10^{-4} m mol TE on M1 Ignore SF except 1 SF	
	• number of molecules of PVP polymer (1	molecules = $3.2889 \times 10^{-7} \times 6.02 \times 10^{23} = 1.9799 \times 10^{17}$ Accept $2.0 \times 10^{17} / 2 \times 10^{17}$ TE on M2 (from any M_r value) Ignore SF Do not award multiplication of N_A by mass	

Question Number	Answer		Additional Guidance	Mark
24(c)(i)	An answer that makes reference to the following points:			(2)
	 (polymer is a very) large molecule OR (polymer is formed from) large number of / many monomers 	(1)	Allow long-chain (molecule) Allow macromolecule Allow repeating for many Ignore 2 or more / several / different for many Ignore (formed by) addition	Expert
	• (condensation as) splitting off of a (small) molecule	(1)	Allow with loss/elimination of H ₂ O/HCl Ignore forms byproduct	

Question Number	Answer	Additional Guidance	Mark
24(c)(ii)	An answer that makes reference to the following points:	Accept monomers in either order Allow any combination of skeletal, structural or displayed formulae	(2) Expert
		If more than one type of formula shown, all must be correct Penalise errors in chain length once only	
		Ignore connectivity in structural formulae eg Allow COClCH ₂ / COOHCH ₂ / NH ₂ CH ₂ eg Allow C=OCl-CH ₂ / C=OOH-CH ₂ / NH ₂ -CH ₂	
		Penalise connectivity in skeletal / displayed formulae once only	
	• structure of hexanedioyl dichloride (1)	Allow structure of hexanedioic acid	
		Examples of correct structures:	
		Clocch ₂ Ch ₂ Ch ₂ Ch ₂ CoCl / Cloc(Ch ₂) ₄ CoCl	
		CI	
		HOOCCH ₂ CH ₂ CH ₂ COOH / HOOC(CH ₂) ₄ COOH	
		НОООН	
	• structure of hexane-1,6-diamine (1)	H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ / H ₂ N(CH ₂) ₆ NH ₂	
		H ₂ N NH ₂	

Question Number	Answer		Additional Guidance	Mark
24(c)(iii)	An answer that makes reference to the following points:		Allow any combination of skeletal, structural or displayed formulae	(2)
	amide linkage (within polymer chain)	(1)	Allow -NHCO- / -CONH- / -HNCO- / -OCNH-	Expert
	• two repeat units	(1)	Ignore omission of square brackets Ignore <i>n</i>	
			Examples of two repeat units:	
			NH NH	
			-CO(CH ₂) ₅ NHCO(CH ₂) ₅ NH-	
			{NH NH	
			-NH(CH ₂) ₅ CONH(CH ₂) ₅ CO-	0 1 \

(Total for Question 24 = 18 marks)

Total for Section B = 50 marks

Section C

Question Number	Answer	Additional Guidance	Mark
25(a)	An answer that makes reference to the following points:	Ignore any structures / formulae	(2)
	• ester (1)	Ignore carbonyl Do not award ketone / aldehyde / carboxylic acid Do not award ether	Graduate
	 (primary) amine and arene/benzene/phenyl 	Allow amino Allow aryl Ignore alkyl/alkane Do not award alkene	
	OR	Do not award phenol	
	phenylamine (1)	Allow aniline Allow aromatic amine	

Question Number	Answer		Additional Guidance	Mark
25(b)(i)	An answer that makes reference to the following points:		Ignore non-molecular formulae	(2)
	molecular formulae of procaine and HCl	(1)	C ₁₃ H ₂₀ N ₂ O ₂ + HCl Allow elements in any order	Graduate
	molecular formula of procaine monohydrochloride	(1)	C ₁₃ H ₂₁ Cl ⁽⁻⁾ N ₂ ⁽⁺⁾ O ₂ Allow elements in any order TE on molecular formula of procaine	
			Ignore position of charges	
			Do not award separate C ₁₃ H ₂₁ N ₂ ⁺ O ₂ and Cl ⁻ ions Do not award any additional product(s)	
			Example of equation: $C_{13}H_{20}N_2O_2 + HCl \rightarrow C_{13}H_{21}ClN_2O_2$ scores (2)	

Question Number	Answer		Additional Guidance	Mark
25(b)(ii)	An explanation that makes reference to the following points:		Ignore just comparison of electron density on N atoms Ignore just comparison of ability of (N) lone pairs to accept H ⁺	(2)
	identification of tertiary amine nitrogen and effect of ethyl groups OR benzene ring		Accept any unambiguous identification	Expert
	EITHER			
	ethyl / alkyl (groups) are electron donating		Accept ethyl / alkyl has positive inductive effect Allow ethyl / alkyl are electron pushing / electron releasing Allow methyl / R / attached groups for ethyl / alkyl	
	OR			
	lone pair (on N of NH ₂ partially) delocalised into (aromatic) π-bond(s)	(1)	Accept non-bonding pair for lone pair Allow electron pair for lone pair Allow overlaps with / interacts with / released into / drawn into for delocalised into Allow p-orbitals / ring for (aromatic) π -bond(s) Ignore just benzene for (aromatic) π -bond(s)	
			Ignore just ring is electron withdrawing (with no mention of electron pair)	
	second effect	(1)		
			If no other mark awarded, tertiary / aliphatic amine is more basic OR aromatic / primary amine is less basic scores (1)	

Question Number	Answer	Additional Guidance	Mark
25(c)	An answer that makes reference to the following point:	Allow any combination of skeletal, structural or displayed formulae	(1)
		Example of structure:	Expert
	structure of 4-aminobenzoic acid	H ₂ N OH	
		Allow Kekulé benzene Allow protonation of -NH ₂ to -NH ₃ ⁺ Allow deprotonation of -COOH to -COO ⁻ Allow zwitterion	
		Do not award any other hydrolysis product	

Question Number	Answer		Additional Guidance	Mark
25(d)(i)	An answer that makes reference to the following points:		Ignore omission or incorrect placement of methyl groups in M2 and M3	(4)
	• equation for formation of nitronium ion	(1)	$\begin{split} HNO_3 + H_2SO_4 &\to NO_2^+ + HSO_4^- + H_2O \\ OR \\ HNO_3 + 2H_2SO_4 &\to NO_2^+ + 2HSO_4^- + H_3O^+ \\ OR \\ HNO_3 + H_2SO_4 &\to H_2NO_3^+ + HSO_4^- \text{ and } H_2NO_3^+ \to NO_2^+ + H_2O \end{split}$	Expert
	curly arrow from within hexagon to anywhere on NO ₂ ⁺	(1)	TE on electrophile from M1 provided positively charged Do not award lone pair on N of NO ₂ ⁺	
	structure of intermediate ion	(1)	Allow any part of gap in 'horseshoe' facing tetrahedral carbon and covering at least three carbons with some part of positive sign within 'horseshoe'. 'Horseshoe' may be dashed TE on electrophile from M2 Do not award NO ₂ –C connectivity Do not award dashed C–H and C–N bonds unless 3D structure	
	 curly arrow from C–H bond to within ring and correct product and H⁺ 	(1)	$+$ NO_2 $+$ H^+	

Question Number	Answer	Additional Guidance	Mark
25(d)(ii)	An answer that makes reference to the following points:	Allow structures with di-, tri- or tetranitro substitution	(2)
		Ignore connectivity of NO ₂ group	Graduate
		Penalise omission of delocalised ring once only	
		Examples of structures:	
	• structure of 2,4-dimethylnitrobenzene (1)	NO ₂	
	• structure of 3,5-dimethylnitrobenzene (1)	O ₂ N	

Question Number	Answer	Additional Guidance	Mark
25(d)(iii)	An answer that makes reference to the following point:		(1)
	tin and (concentrated) hydrochloric acid	Accept Sn and HCl((aq))	Graduate
		Ignore heat / reflux Ignore NaOH in second step	
		Do not award NaOH with Sn and HCl in the same step Do not award any reference to catalyst	

Question Number	Answer	Additional Guidance	Mark
25(d)(iv)	An answer that makes reference to the following point:	Ignore non-skeletal formulae	(1)
	skeletal formula of 2-chloroethanoyl chloride	Ignore bond angles and bond lengths O	Graduate
		CI	
		Allow skeletal formula of 2-chloroethanoic acid	
		Ignore OH connectivity	
		Allow skeletal formula of 2-chloroethanoic anhydride	
		Allow skeletal formula of 2-chloroethanoyl bromide	
		Do not award skeletal formula of 2-chloroethanoyl cation	

Question Number	Answer	Additional Guidance	Mark
25(d)(v)	An answer that makes reference to the following point:		(1)
	• nucleophilic substitution	Allow S _N 2 / S _N 1	Clerical
		Do not award any other answer	

Question Number	Answer	Additional Guidance	Mark
25(e)	An answer that makes reference to the following point: • indication of chiral centre	S O NH NH articaine	(1) Graduate
		Allow any indication Do not award any other answer	

Question Number	Answer		Additional Guidance	Mark
25(f)	An answer that makes reference to the following points:		Example of calculation:	(3)
	• number of half-lives in 4 hours	(1)	half-lives = $\frac{(4 \times 60)}{20} = 12$	Expert
	mass of articaine remaining in mg	(1)	$mass = 100 \times 0.5^{12} = 0.024414 \text{ (mg)}$ TE on M1 Ignore SF except 1SF	
	 conversion of mg to μg 	(1)	mass = $0.024414 \times 1000 = 24.414$ (µg) TE on M1 and M2	

(Total for Question 25 = 20 marks)

Total for Section C = 20 marks Total for Paper = 90 marks