Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P71950A
Publications Code 4CH1_1C_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i) (ii) (iii)	fractional distillation chromatography simple distillation	ACCEPT distillation	1 1 1
(b)	M1 A mixture of copper(II) oxide and copper(II) sulfate can be separated by first dissolving the copper(II) sulfate in distilled water. M2 The copper(II) oxide is then removed by filtering M3 Some of the water from the copper(II) sulfate solution is then removed by evaporating M4 A pure sample of hydrated copper(II) sulfate is then obtained by crystallisation	ACCEPT filtration ACCEPT evaporation ACCEPT simple distillation ACCEPT crystallising	4
			Total 7

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
2 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
(hydrated) iron(III) oxide / \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) \\
D oxidation \\
A is incorrect as it is not a combustion reaction \(B\) is incorrect as it is not a decomposition reaction \(C\) is incorrect as it is not a neutralisation reaction zinc
\end{tabular} \& \begin{tabular}{l}
IGNORE iron oxide REJECT iron(II) oxide \\
ALLOW Zn
\end{tabular} \& 11 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}
\] \\
(squeaky) pop with lighted splint/lit with a (Bunsen) flame
\end{tabular} \& \begin{tabular}{l}
ALLOW multiples and fractions \\
IGNORE state symbols even if incorrect \\
IGNORE just 'burns with a squeaky pop' \\
REJECT use of glowing splint
\end{tabular} \& 1

1

\hline | (c) (i) |
| :--- |
| (ii) | \& | displacement |
| :--- |
| pink-brown /pink (solid) | \& | ACCEPT redox /oxidation and reduction |
| :--- |
| ACCEPT pink / brown / orange alone or in combinations eg orange-brown |
| ALLOW red-brown |
| REJECT red |
| IGNORE copper | \& 1

1

\hline (d) \& iron is less reactive/lower in the reactivity series (than magnesium) ORA \& IGNORE just 'iron is not reactive enough' with no comparison \& 1

\hline \& \& \& Total 8

\hline
\end{tabular}

Question number	Answer	Notes	Marks
3 (a)	Type of bonding Type of structure (X) covalent simple molecular (Y) M1 covalent M2 giant (covalent) (Z) M3 ionic M4 giant (ionic) lattice	ALLOW giant molecular /giant covalent lattice ACCEPT macromolecular ALLOW (ionic) lattice IGNORE 'giant' alone	4
(b)	An explanation that links the following points M1 (X has) weak intermolecular forces / weak forces between molecules M2 (so) little energy needed to overcome the forces/separate the molecules / the forces require little energy to break	ALLOW weak intermolecular bonds / weak bonds between molecules IGNORE less energy REJECT any reference to weak covalent bonds or covalent bonds being broken or ionic bonds for both marks. REJECT intermolecular forces between atoms/bonds for both marks	2
			Total 6

Question number	Answer	Notes	Marks
4 (a) (i)	Any two from M1 same general formula M2 same functional group M3 each member differs from the next by CH_{2} M4 similar chemical properties / (chemical) reactions M5 trend/change/increase in physical properties M1 two shared pairs of electrons between two carbon atoms M2 shared pair of electrons between each hydrogen and the carbon it is bonded to	IGNORE references to a specific homologous series ALLOW same chemical properties / (chemical) reactions ACCEPT named physical property e.g. trend in boiling points REJECT same / similar physical properties ACCEPT any combination of dots and crosses ACCEPT with or without shells drawn IGNORE inner shells on carbon atoms REJECT if non-bonding electrons shown on carbon REJECT if non-bonding electrons shown on hydrogen	2
(b) (i) (ii)	There are twice as many hydrogen atoms as carbon atoms (in every alkene) OWTTE M1	ACCEPT general formula is $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$ ACCEPT it is the lowest whole number ratio of atoms in alkenes ALLOW methyl group to be shown as $-\mathrm{CH}_{3}$ rather than fully displayed IGNORE brackets and n REJECT structure without extension bonds	1 2

Question number	Answer	Notes	Marks
4 (c) (i) (ii) (iii)	M1 (molecular formula) $\mathrm{C}_{4} \mathrm{H}_{6}$ M2 (empirical formula) $\mathrm{C}_{2} \mathrm{H}_{3}$ An explanation that links the following three points M1 made up of carbon/C and hydrogen/H (atoms) M2 only M3 contains (two) C=C / (carbon-carbon) double bonds A description that refers to the following two points M1 add bromine water M2 (bromine water) decolourised / turns (from orange/yellow to) colourless	REJECT carbon and hydrogen molecules in M1 M2 dep on mention of just carbon and hydrogen in M1 ALLOW contains a (carboncarbon) double bond REJECT add bromine for M1 M2 dep on reference to bromine in M1 IGNORE incorrect initial colour REJECT if reference to uv being needed for reaction to take place	2
			Total 14

Question number	Answer	Notes	Marks
5 (a) (i) (ii)	Any two from: M1 effervescence/fizzing/bubbles M2 lithium becomes smaller/disappears M3 moves (across the surface) M1 (solution turns) yellow M2 (solution is) an alkali/alkaline	IGNORE hydrogen / gas formed ALLOW Lithium dissolves IGNORE melts / forms a ball / flame ACCEPT lithium hydroxide / hydroxide ions / OH^{-}ions formed ALLOW basic	2
(b)	A description that refers to the following five points M1 flame test M2 red (flame) M3 add (dilute hydrochloric) acid M4 (pass/bubble) gas/carbon dioxide into limewater M5 (limewater) turns cloudy/milky / white ppt forms	ACCEPT description of flame test IGNORE 'burning' ACCEPT crimson REJECT brick-red ACCEPT nitric or sulfuric acid REJECT if additional incorrect reagent given eg silver nitrate M4 dep on acid in M3 M5 dep on use of limewater No M4 or M5 if limewater added directly to the solution	5
(c)	M1 electrostatic attraction M2 between oppositely charged ions	ACCEPT between anions/negative ions and cations/positive ions REJECT implication of covalent bonding for M2	2
			Total 11

Question number	Answer	Notes	Marks
6 (a) (i) (ii) (iii)	$\begin{aligned} & \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq}) \\ & \mathrm{Pb}^{2+} \quad \text { and } \mathrm{NO}_{3}^{-} \\ & \mathrm{M1} 207+(14+16 \times 3) \times 2 \\ & \mathrm{M} 2331 \end{aligned}$	ALLOW upper case letters for state symbols Correct answer without working scores ALLOW ECF on M1 if other multiples of atomic masses added together eg $207+14$ $+(16 \times 3)=269$ for 1 mark REJECT use of atomic numbers for both marks	1 1 2
(b) (i) (ii) (iii)	all points plotted correctly to the nearest grid line point at $2.9 \mathrm{~cm} / 6.0 \mathrm{~cm}^{3}$ circled M1 best fit straight line through first four points ignoring the anomalous point M2 horizontal straight line through last three points	ALLOW ecf from incorrect plotting ALLOW max (1) if lines do not cross or meet, or if a smooth curve is drawn, avoiding the anomalous point	1 1 2
(iv) (v) (vi)	Any two from M1 precipitate not allowed to settle M2 height (of precipitate) measured incorrectly eg reference to parallax when measuring height M3 more than $2 \mathrm{~cm}^{3}$ (of lead(II) nitrate) added / (total volume of lead(II) nitrate added was) more than $6 \mathrm{~cm}^{3}$ no precipitate as no lead(II) nitrate added OWTTE value read from graph where lines cross	ACCEPT height measured too soon ALLOW too much lead(II) nitrate added no mark if lines do not cross/meet or if there aren't two lines eg a curve is drawn	2
			Total 12

Question number	Answer	Notes	Marks
7 (a)	M1 (number of protons) 53 M2 (number of neutrons) ($127-53=$) 74		2
(b)	M1 $79 \times 52.8+81 \times 47.2$ OR 7994.4 M2 $7994.4 \div 100$ OR 79.944 M3 79.9	correct answer without working scores 3 79.944 without working scores 2 M3 dep on use of 79 \& 81 in calculation	3
(c)	M1 (amount of $\mathrm{AlCl}_{3}=$) $26.7 \div 133.5$ OR $0.2(00)(\mathrm{mol})$ M2 (amount of $\left.\mathrm{Cl}_{2}=\right) \frac{0.2(00) \times 3}{2}$ OR $0.3(00)(\mathrm{mol})$ M3 (mass of $\mathrm{Cl}_{2}=$) $0.3(00) \times 71=21.3(\mathrm{~g})$ OR M1 213 g of Cl_{2} produces 267 g of AlCl_{3} M2 (mass of $\mathrm{Cl}_{2}=$) $\frac{26.7}{267} \times 213$ $\text { M3 }=21.3(\mathrm{~g})$	correct answer without working scores 3 ALLOW ECF on M1, as long as an attempt has been made to find moles ALLOW ECF on M2 ALLOW any number of sig figs except 1	3

Question number	Answer	Notes	Marks
8 (a) (i) (ii)	to allow the heat (energy) to be distributed evenly (throughout the water) OWTTE to avoid some of the liquid/fuel/pentanol evaporating OWTTE	ACCEPT so the temperature is the same (throughout the water)	1 1
(b)	Initial temperature of water in ${ }^{\circ} \mathrm{C}$ 15.9 Final temperature of water in ${ }^{\circ} \mathrm{C}$ 50.9 Temperature change in ${ }^{\circ} \mathrm{C}$ 35.0	PENALISE answer not to nearest $0.1^{\circ} \mathrm{C}$ once only ALLOW ecf on initial temperature Correct values transposed scores (1)	2
(c) (i) (ii)	$M 1(Q=) 100 \times 4.2 \times 35(\mathrm{~J})$ M2 14700 (J) M1 (mass of pentanol =) $90.11-89.75$ OR $0.36(\mathrm{~g})$ M2 (amount of pentanol $=$) $0.36 \div 88$ OR $0.0041(\mathrm{~mol})$ M3 $14700 \div 0.0041$ OR $3600000(\mathrm{~J} / \mathrm{mol})$ M4 $3600000 \div 1000$ OR $3600(\mathrm{~kJ} / \mathrm{mol})$ M5 ($\Delta H=)-3600(\mathrm{~kJ} / \mathrm{mol})$	Correct answer of 14700 without working scores 2 ALLOW 15000 (J) only if M1 is scored Correct answer without working scores 5 ALLOW ecf on incorrect mass REJECT 0.004 (which gives final answer of -3675) ALLOW ecf as long as there has been an attempt to calculate moles of pentanol ALLOW any SF except 1 SF	2
(d)	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}+7.5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ M1 all formulae correct M2 balancing of correct formulae	ALLOW multiples M2 dep on M1 IGNORE state symbols even if incorrect	2
			Total 13

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 9 (a) (i) \& \begin{tabular}{l}
B 4 \\
\(A\) is incorrect as there are not 3 different elements in \(\mathrm{Na}_{2} \mathrm{SO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\) \\
C is incorrect as there are not 5 different elements in \(\mathrm{Na}_{2} \mathrm{SO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\) \\
D is incorrect as there are not 10 different elements in \(\mathrm{Na}_{2} \mathrm{SO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\) \\
D 28 \\
A is incorrect as there is not a total of 10 atoms in \(\mathrm{Na}_{2} \mathrm{SO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\) \\
B is incorrect as there is not a total of 22 atoms in \(\mathrm{Na}_{2} \mathrm{SO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\) \\
C is incorrect as there is not a total of 27 atoms in \(\mathrm{Na}_{2} \mathrm{SO}_{4} .7 \mathrm{H}_{2} \mathrm{O}\)
\end{tabular} \& \& 1

1

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) | \& | A description that refers to the following two points |
| :--- |
| M1 heat the sodium sulfate (again) |
| M2 (repeat) until there is no further change in mass |
| An explanation that links the following two points |
| M1 to cool the (water) vapour |
| M2 so it condenses / forms liquid/water |
| A description that refers to the following two points |
| M1 heat (the water) / measure the boiling point |
| M2 (if it) boils at $100^{\circ} \mathrm{C}$ (it is pure water) / boiling point is $100^{\circ} \mathrm{C}$ | \& | ACCEPT 'heat to constant mass' for both marks |
| :--- |
| ACCEPT steam |
| ALLOW find the freezing point /melting point? |
| REJECT evaporate |
| ALLOW freezes/ melts at $0^{\circ} \mathrm{C}$ |
| IGNORE chemical test even if incorrect | \& 2

2
2

\hline
\end{tabular}

(c)	M1 mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}(=19.38-15.83)=3.55(\mathrm{~g})$ M2 mass of $\mathrm{H}_{2} \mathrm{O}(=23.88-19.38)=4.50(\mathrm{~g})$ M3 amount of $\mathrm{Na}_{2} \mathrm{SO}_{4}(=3.55 \div 142)=0.025(\mathrm{~mol})$ M4 amount of $\mathrm{H}_{2} \mathrm{O}(=4.50 \div 18)=0.25(\mathrm{~mol})$ $\text { M5 } \times(=0.25 \div 0.025)=10$ OR M1 mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}(=19.38-15.83)=3.55(\mathrm{~g})$ M2 mass of $\mathrm{H}_{2} \mathrm{O}(=23.88-19.38)=4.50(\mathrm{~g})$ M3 mass of water combined with 1 mole of sodium sulfate $=\frac{142}{3.55} \times 4.50=180(\mathrm{~g})$ M4 moles of $\mathrm{H}_{2} \mathrm{O}=180 \div 18$ M5 therefore, $x=10$	Correct answer without working scores 5 ALLOW ECF from incorrect M1 ALLOW ECF from incorrect M2 ALLOW an integer ECF on M3 \& M4 ACCEPT alternative correct methods	5
			Total 13

Question number	Answer	Notes	Marks
10 (a) (i) (ii)	M1 0.0036 moles of HCl react with 0.0018 moles of Zn M2 mass of Zn that reacts is $0.0018 \times 65=0.117$ (g) (which is less than 1.3 g , so zinc is in excess) OR M1 moles of zinc that can react with 0.0036 moles of $\mathrm{HCl}=0.0036 / 2=0.0018(\mathrm{~mol})$ M2 moles of Zn present $=1.3 \div 65=0.02(\mathrm{~mol})$ (which is more than 0.0018 , so zinc is in excess) OR M1 amount of zinc $=1.3 \div 65=0.02(\mathrm{~mol})$ M2 amount of HCl that can react $=2 \times 0.02=0.04$ (mol) (which is greater than 0.0036 , so zinc is in excess) M1 curve starting at origin and steeper than curve A M2 curve levelling off at same volume as curve A /at $40 \mathrm{~cm}^{3}$	ALLOW 0.234 g is less than 1.3 g , so zinc in excess for (1)	2
(b) (i)	An explanation that links any of the following four points M1 curve B is less steep (than curve A) M2 (because) the particles have less kinetic energy M3 so there are fewer successful collisions per unit time/less frequent successful collisions M4 so rate of reaction is slower / reaction takes longer to complete M5 no change in reacting quantities, so final volume is unchanged	ALLOW particles move more slowly ACCEPT less frequent collisions that exceed activation energy ACCEPT reverse argument throughout	4

(ii)	An explanation that links two of the following points M1 only half the moles (of hydrochloric acid) used / (hydrochloric acid) concentration is halved M2 (so) only half the volume $/ 20 \mathrm{~cm}^{3}$ of hydrogen/gas produced	If M1 and M2 are not scored, allow (1) mark for the idea that less HCl produces less hydrogen	
(C)	M3 hydrochloric acid is less concentrated so curve is less steep	A description that refers to the following two points M1 (a catalyst) provides an alternative pathway/route M2 with a lower activation energy	IGNORE general statements about catalysts increasing rate / not being used up

