

Mark Scheme (Results)

November 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C and Science Double Award (4SD0) Paper 1C

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

November 2023 Question Paper Log Number P73423A Publications Code 4CH1\_1C\_MS\_2311 All the material in this publication is copyright © Pearson Education Ltd 2023

## **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question number | Answer                                                                                                                                    | Notes                                                                                                                                             | Marks    |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1 (a)           | Four more particles (randomly spaced and) far apart                                                                                       | IGNORE any lines or arrows ACCEPT more than four particles as long as they are far apart REJECT any particles touching                            | 1<br>GR  |
| (b)             | An explanation that links the following two points                                                                                        |                                                                                                                                                   | 2<br>EXP |
|                 | M1 (mean kinetic) energy of particles increases                                                                                           | ALLOW particles move<br>faster/more quickly<br>IGNORE particles<br>vibrate more<br>IGNORE it has more<br>energy/ heat energy<br>increases         | <u> </u> |
|                 | M2 more particles have enough energy to escape /more particles overcome the (intermolecular) forces (of attraction) holding them together | ALLOW particles escape<br>more quickly/more<br>easily<br>IGNORE more collisions<br>REJECT breaking of<br>bonds                                    |          |
|                 |                                                                                                                                           | ALLOW molecules<br>/atoms for particles in<br>M1 and M2                                                                                           |          |
| (c) (i)         | condensation/condensing                                                                                                                   |                                                                                                                                                   | 1<br>CL  |
| (ii)            | $H_2O(g) \rightarrow H_2O(l)$                                                                                                             | ACCEPT multiples<br>Formula must be<br>correct                                                                                                    | 1<br>GR  |
|                 |                                                                                                                                           | ALLOW  steam(g) → water(l)  water(g) → water(l)  Water vapour(g)  →water(l)  ALLOW upper case  letters for state symbols  Ignore missing brackets |          |
| (d)             | M1 <u>regular</u> arrangement of particles/particles closely packed                                                                       | ALLOW particles in a regular lattice                                                                                                              | 2<br>EXP |
|                 | M2 (particles) vibrate around a fixed position/vibrate only                                                                               |                                                                                                                                                   |          |
|                 |                                                                                                                                           |                                                                                                                                                   | Total 7  |

| Electron Proton Neutron  Relative mass 0.0005 1 1  Relative charge -1 +1 0  ALLOW - + All 4 correct 2 marks 2 or 3 correct 1 mark  (b) (i) B (3)  A is incorrect as 2 is not the atomic number of P | 2        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Relative mass   0.0005   1   1                                                                                                                                                                      | 1        |
| Relative charge -1 +1 0 ALLOW - + All 4 correct 2 marks 2 or 3 correct 1 mark                                                                                                                       | 1        |
| ALLOW - + All 4 correct 2 marks 2 or 3 correct 1 mark                                                                                                                                               | 1        |
| (b) (i) B (3)                                                                                                                                                                                       | 1        |
| (b) (i) B (3)                                                                                                                                                                                       | 1        |
| A is incorrect as 2 is not the atomic number of P                                                                                                                                                   | •        |
| C is incorrect as 4 is not the atomic number of P D is incorrect as 7 is the mass number of P                                                                                                       |          |
| (ii) B (16)                                                                                                                                                                                         | 1        |
| A is incorrect as 8 is the atomic number of U C is incorrect as 18 is not the mass number of U D is incorrect as 26 is not the mass number of U                                                     |          |
| (iii) S ALLOW nitrogen/N/N <sub>2</sub>                                                                                                                                                             | 1        |
|                                                                                                                                                                                                     |          |
| (c) (i) An explanation that links the following two points                                                                                                                                          | 2        |
| M1 (Q and R have) same number of protons/ both have 5 protons IGNORE same number of electrons                                                                                                       |          |
| M2 (but) different numbers of neutrons/ (Q has) 5 neutrons and (R has) 6 neutrons/R has an extra neutron latomic and mass numbers                                                                   |          |
| (ii) M1 20.6 × 10 + 79.4 × 11 OR 1079.4                                                                                                                                                             | 3        |
| M2 $\frac{20.6 \times 10 + 79.4 \times 11}{100}$ OR $\frac{1079.4}{100}$ OR 10.794 ALLOW ecf if incorrect mass numbers used                                                                         |          |
| M3 10.8 10.8 without working scores 3                                                                                                                                                               |          |
| 10.79/10.794 without working scores 2                                                                                                                                                               |          |
| Use of 5 and 6 = 5.8 scores 2                                                                                                                                                                       |          |
| Use of 15 and 16 =                                                                                                                                                                                  |          |
| 15.8 scores 2<br>Use of 5 and 5 =5.0                                                                                                                                                                |          |
| scores 1                                                                                                                                                                                            | Total 10 |

| Question<br>number | Answer                                                                                                           | Notes                                                                                                                                                                            | Marks    |
|--------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 3 (a) (i)          | fractional distillation                                                                                          | ALLOW fractionating                                                                                                                                                              | 1        |
| (ii)               | (crude oil/it is) heated / vapourised/ boiled                                                                    | Ignore evaporated                                                                                                                                                                | 1        |
| (iii)              | Е                                                                                                                | ALLOW gasoline/petrol                                                                                                                                                            | 1        |
| (iv)               | kerosene                                                                                                         | ALLOW paraffin                                                                                                                                                                   | 1        |
| (v)                | (Fuel) for ships                                                                                                 | ALLOW any acceptable use of fuel oil eg home heating, industrial heating, electricity generation, power station, furnaces for metal smelting, feedstock for plastics/fertilisers | 1        |
| (b)                | An explanation that links the following three points                                                             |                                                                                                                                                                                  | 3        |
|                    | M1 B has longer chain/molecules ORA                                                                              | ALLOW B has<br>larger/bigger/longer<br>chain/ molecule/hydrocarbon<br>ALLOW molecule/hydrocarbon<br>with greater mass                                                            |          |
|                    | M2 B has stronger intermolecular forces/bonds Forces/bonds between molecules ORA                                 | ALLOW more intermolecular<br>forces/ bonds<br>REJECT IMF between atoms                                                                                                           |          |
|                    | M3 more energy is needed to overcome the (intermolecular) forces/intermolecular bonds separate the molecules ORA | No <b>M2</b> or <b>M3</b> if any reference to breaking of covalent bonds                                                                                                         |          |
| (c) (i)            | silica / alumina (catalyst)                                                                                      | ACCEPT SiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> /silicon<br>dioxide /aluminium oxide<br>/aluminosilicates /zeolites                                                      | 1        |
| (ii)               | Any one of the following two pairs                                                                               |                                                                                                                                                                                  | 2        |
|                    | M1 $C_2H_4$ and M2 $C_5H_{10}$ OR M1 $C_3H_6$ and M2 $C_4H_8$                                                    | If the equation does not<br>balance allow 1 mark for a<br>correct formula of an alkene                                                                                           |          |
| (iii)              | (to make) polymers /polymerisation                                                                               | ACCEPT the name of a correct addition polymer eg polyethene, polypropene etc.                                                                                                    | 1        |
|                    |                                                                                                                  | ACCEPT to make alcohol(s) Reject fuels                                                                                                                                           |          |
|                    |                                                                                                                  | ,                                                                                                                                                                                | Total 12 |

|   | uesti<br>numb |       | Answer                                                                                     | Notes                                                   | Marks    |
|---|---------------|-------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|
| 4 | (a)           | (i)   | nitrogen                                                                                   | ALLOW N <sub>2</sub>                                    | 1        |
|   |               | (ii)  | carbon dioxide                                                                             | ALLOW CO <sub>2</sub>                                   | 1        |
|   |               | (iii) | argon                                                                                      | ALLOW Ar                                                | 1        |
|   |               | (iv)  | hydrogen                                                                                   | ALLOW H <sub>2</sub>                                    | 1        |
|   |               | (v)   | carbon dioxide                                                                             | ALLOW CO <sub>2</sub>                                   | 1        |
|   |               | (vi)  | (12 + 2 × 16 =) 44                                                                         |                                                         | 1        |
|   |               | (vii) | air is a mixture (of gases) / does not have a formula / does not have an $M_{\rm r}$ OWTTE |                                                         | 1        |
|   | (b)           | (i)   | (thermal) decomposition                                                                    |                                                         | 1        |
|   |               | (ii)  | M1 green M2 (to) black                                                                     | Mark independently colours must be in the correct order | 2        |
|   |               | (iii) | $CuCO_3 \rightarrow CuO + CO_2$                                                            | ALLOW multiples and fractions                           | 1        |
|   |               |       |                                                                                            | IGNORE state symbols even if incorrect                  |          |
|   |               |       |                                                                                            |                                                         | Total 11 |

| Question<br>number | Answer                                                                                     | Notes                                                                                                                                      | Marks |
|--------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5 (a) (i)          | M1 (compounds with) same molecular formula                                                 | IGNORE general formula/chemical formula                                                                                                    | 2     |
|                    | M2 different structural/displayed formulae                                                 | ALLOW different structures/arrangement of atoms                                                                                            |       |
| (ii)               | M1 displayed formula of butane<br>H H H H                                                  | REJECT molecular formula in structure                                                                                                      | 2     |
|                    | H-C-C-C-H<br>H H H H                                                                       | Accept either order                                                                                                                        |       |
|                    | M2 displayed formula of methylpropane  HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH                 |                                                                                                                                            |       |
| (b) (i)            | ultraviolet/UV (radiation)                                                                 | ALLOW ultraviolet/UV light/rays                                                                                                            | 1     |
| (ii)               | $C_2H_6 + Br_2 \rightarrow C_2H_5Br + HBr$                                                 | ALLOW multiple<br>substitutions as long as the<br>equation is balanced                                                                     | 1     |
| (iii)              | Substitution                                                                               |                                                                                                                                            | 1     |
| (c)                | An explanation that links the following two points                                         |                                                                                                                                            | 2     |
|                    | M1 (has) <u>all</u> single bonds/ <u>only</u> single bonds/ (has) no double/multiple bonds |                                                                                                                                            |       |
|                    | M2 (so) no other atoms can be added (to ethane)/no addition reactions                      | ALLOW contains the maximum number of hydrogen atoms /each carbon bonded to four hydrogen atoms ALLOW only undergoes substitution reactions |       |
| (d)                | M1 with ethane bromine water stays orange/yellow                                           | ALLOW no (colour) change<br>/not decolourised<br>IGNORE no reaction<br>,no observation<br>IGNORE brown<br>REJECT any other colour          | 2     |
|                    | M2 with ethene bromine water changes (from orange/yellow) to colourless/ is decolourised   | IGNORE brown<br>REJECT any other colour                                                                                                    |       |

| (e) | An explanation that links the following three points                                                                                                                                                 |                                                                                                                             | 3 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---|
|     | $M1$ there are twice as many H atoms as C atoms in alkenes $OR$ general formula of alkenes is $C_nH_{2n}$                                                                                            | ALLOW examples of any<br>two from C <sub>2</sub> H <sub>4</sub> C <sub>3</sub> H <sub>6</sub> C <sub>4</sub> H <sub>8</sub> |   |
|     | M2 (so alkenes) empirical formula is always CH <sub>2</sub>                                                                                                                                          |                                                                                                                             |   |
|     | <b>M3</b> (alkanes)empirical formula of $C_2H_6$ is $CH_3$ and empirical formula of $C_4H_{10}$ is $C_2H_5$ (shows they are different) Alkanes general formula is $C_nH_{2n+2}$ so can't divide by n |                                                                                                                             |   |

| (f) | M1 | 19.2<br>12                      | 4.0<br>1   | 12.8<br>16 | 64.0<br>80 | 0 marks for upside down calculation or use of                                       | 3        |
|-----|----|---------------------------------|------------|------------|------------|-------------------------------------------------------------------------------------|----------|
|     |    |                                 |            |            |            | atomic numbers Ecf on incorrect atomic mass but can't be an atomic number 6,8 or 35 |          |
|     | M2 | 1.6<br>0.8                      | 4.0<br>0.8 | 0.8<br>0.8 | 0.8<br>0.8 |                                                                                     |          |
|     | OR | 2                               | 5          | 1          | 1          |                                                                                     |          |
|     | М3 | C <sub>2</sub> H <sub>5</sub> ( | OBr        |            |            | Symbols can be in any order                                                         |          |
|     |    |                                 |            |            |            | correct answer without working scores 3                                             |          |
|     |    |                                 |            |            |            | Τ                                                                                   | Total 17 |

| Question number | Answer                                                                                      | Notes                                                                                                      | Marks       |
|-----------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|
| 6 (a)           | Relights/ignites a glowing splint/spill                                                     |                                                                                                            | 1           |
| (b)             | M1 3 bond pairs correct  M2 rest of molecule fully correct Eg.                              | ALLOW any combination of dots and crosses  M2 dep on M1                                                    | 2           |
|                 | H x o v o x H                                                                               |                                                                                                            |             |
|                 | X: electron of H  •: electron of O                                                          |                                                                                                            |             |
| (c) (i)         | all points plotted correctly to the nearest grid line (+-1/2 small square)                  |                                                                                                            | 1           |
| (ii             | best fit curve starting at 0 and levelling off at 94 cm <sup>3</sup>                        | Ecf possible from misplotted point                                                                         | 1           |
| (d) (i)         | An explanation that links the following three points                                        |                                                                                                            | 3           |
|                 | M1 fewer particles (in the same volume)                                                     | REJECT if reference to less/more kinetic energy/less movement                                              |             |
|                 | M2 fewer collisions per unit time/less frequent collisions                                  | IGNORE less chance of<br>collisions<br>REJECT if reference to<br>less/more kinetic<br>energy/less movement |             |
|                 | M3 (so) rate of reaction decreases                                                          | MAX 1 mark can be<br>awarded here If kinetic<br>energy/particle<br>movement mentioned in<br>answer         |             |
| (ii             | M1 curve starting at 0 and less steep than original curve                                   |                                                                                                            | 2           |
|                 | M2 curve levelling off at 46-48 cm <sup>3</sup> inclusive                                   |                                                                                                            |             |
| (e)             | An explanation that links the following two points M1 provides an alternative pathway/route |                                                                                                            | 2           |
|                 | M2 with lower activation energy                                                             |                                                                                                            |             |
|                 |                                                                                             |                                                                                                            | Total<br>12 |

| Question number | Answer                                                                             | Notes                                                                                              | Marks    |
|-----------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|
| 7 (a)           | A description that refers to the following six points                              |                                                                                                    | 6        |
|                 | M1 add sodium hydroxide (solution)                                                 | ALLOW add (aqueous) ammonia                                                                        |          |
|                 | <b>M2</b> if a green precipitate forms it is an iron(II)/Fe <sup>2+</sup> compound | M2 and M3 dep on M1                                                                                |          |
|                 | M3 if a brown precipitate forms it is an iron(III)/Fe <sup>3+</sup> compound       | ALLOW red-<br>brown/orange-brown<br>precipitate                                                    |          |
|                 | M4 add silver nitrate (solution to a fresh sample)                                 | IGNORE addition of<br>nitric acid<br>REJECT addition of<br>hydrochloric or<br>sulfuric acid for M4 |          |
|                 | M5 if cream precipitate forms it is a bromide/Br                                   | M5 and M6 dep on addition of silver nitrate                                                        |          |
|                 | <b>M6</b> if white precipitate forms it is a chloride/Cl                           | intrate                                                                                            |          |
| (b)             | M1 moles of iron = $2.8 \div 56 = 0.05(0)$                                         |                                                                                                    | 3        |
|                 | M2 2 mol iron reacts with 3 mol chlorine                                           |                                                                                                    |          |
|                 | <b>M3</b> moles of Fe to react with $Cl_2 = 0.060 \times 2 = 0.04(0)$              |                                                                                                    |          |
|                 | (so iron is in excess)                                                             |                                                                                                    |          |
|                 | OR M2 2 mol iron reacts with 3 mol chlorine/ 3 mol chlorine reacts with 2 mol iron |                                                                                                    |          |
|                 | <b>M3</b> moles of Fe to react with $Cl_2 = \frac{0.060 \times 2}{2} = 0.04(0)$    |                                                                                                    |          |
|                 | M4 $0.04(0) \times 56 = 2.24 g$ (so iron is in excess)                             |                                                                                                    |          |
|                 | OR<br>M1 moles of iron = 2.8 ÷ 56 = 0.05(0)                                        |                                                                                                    |          |
|                 | M2,M3 moles of Cl <sub>2</sub> to react with Fe = $0.05(0) \times 3 = 0.075$       |                                                                                                    |          |
|                 | (so 0.060 moles is not enough, so iron is in excess)                               | MAXIMUM 3 MARKS                                                                                    |          |
| (c) (i)         | red                                                                                | ALLOW pink REJECT red-orange                                                                       | 1        |
| (ii)            | H+                                                                                 | ALLOW H₃O⁺                                                                                         | 1        |
|                 |                                                                                    |                                                                                                    |          |
|                 |                                                                                    |                                                                                                    | Total 11 |

| Question number | Answer                                                                                               | Notes                                                                         | Marks   |
|-----------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------|
| 8 (a)           | M1 (electrostatic) attraction between (two) nuclei                                                   | nuclei must be plural ALLOW nucleus of both/two atoms                         | 2       |
|                 | M2 and shared/bonding pair(s) of electrons                                                           | Journ en a desmo                                                              |         |
|                 | OR                                                                                                   |                                                                               |         |
|                 | M1 (electrostatic) attraction between shared/bonding <a href="mailto:pair">pair</a> (s) of electrons |                                                                               |         |
|                 | M2 and (two) nuclei                                                                                  | nuclei must be plural                                                         |         |
| (b)             | An explanation that links the following three points                                                 |                                                                               | 3       |
|                 | M1 diamond is a giant covalent structure/giant lattice structure                                     | IGNORE giant<br>molecule                                                      |         |
|                 | M2 there are (many) strong covalent bonds (which need to be broken)                                  |                                                                               |         |
|                 | M3 large amount of (heat/thermal) energy needed to break the covalent bonds                          | IGNORE more energy                                                            |         |
|                 |                                                                                                      | no M2 or M3 if<br>reference to<br>intermolecular<br>forces/ions in<br>diamond |         |
| (c)             | An explanation that links the following two points                                                   |                                                                               | 2       |
|                 | M1 (graphite has) <u>delocalised</u> electrons                                                       | Ignore free electrons                                                         |         |
|                 | M2 (electrons) are mobile/move/flow                                                                  | M2 dep on mention of electrons Ignore carry charge                            |         |
|                 |                                                                                                      | 0 marks if reference<br>to ions in graphite or<br>atoms moving                |         |
| (d)             | M1 (number of atoms =) $60 \times 6.0 \times 10^{23}$                                                | correct answer without working scores 2                                       | 2       |
|                 | $M2 \ 3.6 \times 10^{25}$                                                                            | answer must be in<br>correct standard form<br>to 1 decimal place              |         |
|                 |                                                                                                      |                                                                               | Total 9 |

| _ | uestion<br>number | Answer                                                                                           | Notes                                                                                                                                      | Marks    |
|---|-------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 9 | (a) (i)           | the metal oxide/it loses oxygen                                                                  | ACCEPT metal ions gain<br>electrons<br>Ignore metal oxide gains<br>electrons                                                               | 1        |
|   | (ii)              | (the gas would escape and) it is flammable/could cause a fire/could cause an explosion           |                                                                                                                                            | 1        |
|   | (iii)             | An explanation that links the following two points                                               |                                                                                                                                            | 2        |
|   |                   | M1 to stop oxygen/air entering the tube OWTTE                                                    |                                                                                                                                            |          |
|   |                   | M2 as some of the metal would change back to the metal oxide/be oxidised/react with oxygen OWTTE |                                                                                                                                            |          |
|   | (iv)              | A description that refers to the following two points                                            |                                                                                                                                            | 2        |
|   |                   | M1 reheat the tube and contents( and reweigh when cool)                                          | ALLOW repeat the instructions/repeat what I did                                                                                            |          |
|   |                   | M2( repeat) until constant mass is obtained OWTTE                                                | Reheat to constant mass scores 2                                                                                                           |          |
|   | (b) (i)           | M1 mass of oxygen = 4.46 – 4.14 <b>OR</b> 0.32 (g)                                               | correct answer without working scores 2                                                                                                    | 2        |
|   |                   | <b>M2</b> (moles of oxygen atoms = 0.32 ÷ 16 =) 0.02(0)                                          | ALLOW ecf on incorrect mass of oxygen atoms                                                                                                |          |
|   | (ii)              | (moles of M =) 0.02(0)                                                                           | ALLOW ecf as long as an attempt has been made to find moles                                                                                | 1        |
|   | (iii)             | <b>M1</b> $(A_r \text{ of } M =) 4.14 \div 0.02(0)$                                              | ALLOW ecf from (ii)                                                                                                                        | 2        |
|   |                   | M2 207                                                                                           | 207 without working<br>scores 2<br>ALLOW ecf on incorrect<br>mass of M or incorrect<br>moles -use of 4.46 gives<br>223 (scores 1)          |          |
|   | (iv)              | Pb/lead                                                                                          | ALLOW ecf on incorrect A <sub>r</sub> of M as long as calculation in (ii) and/or (iii) is viable Use of 4.46 gives 223 Francium (scores 1) | 1        |
|   |                   |                                                                                                  |                                                                                                                                            | Total 12 |

| Question<br>number | Answer                                                                                                      | Notes                                                                                 | Marks   |
|--------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|
| 10 (a)             | to remove<br>excess/unreacted/undissolved/insoluble<br>zinc/solid/metal                                     |                                                                                       | 1       |
| (b)                | A description that refers to the following four points                                                      | Max 1 mark if solution evaporated to dryness                                          | 4       |
|                    | M1 heat the solution to evaporate some of the water/ to form a saturated solution/ to crystallisation point | If solution left to partially evaporate without heating only M3 and M4 can be awarded |         |
|                    | M2 leave the solution to cool /leave the solution for (more) crystals to form                               |                                                                                       |         |
|                    | M3 filter off the crystals                                                                                  | Decant/pour off solution/pick<br>out crystals<br>IGNORE references to<br>washing      |         |
|                    | M4 suitable method of drying the crystals                                                                   | e.g. dry between filter<br>papers/dry in a warm oven/<br>leave to dry                 |         |
|                    |                                                                                                             | REJECT hot oven or direct heating with Bunsen burner                                  |         |
|                    |                                                                                                             | No M4 if crystals are washed after drying                                             |         |
| (c) (i)            | M1 moles of zinc = $\frac{9.75}{65}$ OR 0.15(0)                                                             |                                                                                       | 2       |
|                    | M2 mass of $Zn(NO_3)_2.6H_2O = 297 \times 0.15(0)$ (g) = 44.55 (g)                                          | 44.55 / 44.6 (g) without working scores 2                                             |         |
|                    |                                                                                                             | ALLOW 297 X 9.75/65<br>=44.55/44.6 for 2 marks                                        |         |
|                    |                                                                                                             | 297 X 9.75 /30 = 96.52<br>scores 0                                                    |         |
| (ii)               | M1 36.4 ÷ 44.55 × 100                                                                                       | ALLOW ecf from (i)                                                                    | 2       |
|                    | M2 81.7(%)                                                                                                  | ALLOW any number of sig figs except 1 but rounded correctly                           |         |
|                    |                                                                                                             | correct answer without working scores 2                                               |         |
|                    |                                                                                                             | use of 44.6 gives 81.6(%)/82<br>use of 45 gives 80.9(%)/81                            |         |
|                    |                                                                                                             |                                                                                       | Total 9 |