Mark Scheme (Results)

November 2023

Pearson Edexcel International GCSE

In Chemistry (4CH1) Paper 1C and Science Double Award (4SD0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2023
Question Paper Log Number P73423A
Publications Code 4CH1_1C_MS_2311

All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	Four more particles (randomly spaced and) far apart	IGNORE any lines or arrows	ACCEPT more than four particles as long as they are far apart
(b)		REJECT any particles touching	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
(ii) \\
(iii) \\
(iv) \\
(v)
\end{tabular} \& \begin{tabular}{l}
fractional distillation \\
(crude oil/it is) heated / vapourised/ boiled \\
E \\
kerosene \\
(Fuel) for ships
\end{tabular} \& \begin{tabular}{l}
ALLOW fractionating \\
Ignore evaporated \\
ALLOW gasoline/petrol \\
ALLOW paraffin \\
ALLOW any acceptable use of fuel oil eg home heating, industrial heating, electricity generation, power station, furnaces for metal smelting, feedstock for plastics/fertilisers
\end{tabular} \& 1
1 \\
\hline (b) \& \begin{tabular}{l}
An explanation that links the following three points \\
M1 B has longer chain/molecules ORA \\
M2 B has stronger intermolecular forces/bonds Forces/bonds between molecules ORA \\
M3 more energy is needed to overcome the (intermolecular) forces/intermolecular bonds separate the molecules ORA
\end{tabular} \& \begin{tabular}{l}
ALLOW B has larger/bigger/longer chain/ molecule/hydrocarbon ALLOW molecule/hydrocarbon with greater mass \\
ALLOW more intermolecular forces/ bonds REJECT IMF between atoms \\
No M2 or M3 if any reference to breaking of covalent bonds
\end{tabular} \& 3 \\
\hline \begin{tabular}{l}
(c) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
silica / alumina (catalyst) \\
Any one of the following two pairs \\
\(\mathrm{M} 1 \mathrm{C}_{2} \mathrm{H}_{4}\) and \(\mathrm{M} 2 \mathrm{C}_{5} \mathrm{H}_{10}\) \\
OR \\
M1 \(\mathrm{C}_{3} \mathrm{H}_{6}\) and \(\mathrm{M} 2 \mathrm{C}_{4} \mathrm{H}_{8}\) \\
(to make) polymers / polymerisation
\end{tabular} \& \begin{tabular}{l}
ACCEPT \(\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}\) /silicon dioxide /aluminium oxide /aluminosilicates/zeolites \\
If the equation does not balance allow 1 mark for a correct formula of an alkene \\
ACCEPT the name of a correct addition polymer eg polyethene, polypropene etc. \\
ACCEPT to make alcohol(s) Reject fuels
\end{tabular} \& 2

1

\hline \& \& \& Total 12

\hline
\end{tabular}

Question number	Answer	Notes	Marks
	nitrogen	ALLOW N 2	1
	carbon dioxide	ALLOW CO2	1
	argon	ALLOW Ar	1
	hydrogen	ALLOW H2	1
	carbon dioxide	ALLOW CO2	1
	$(12+2 \times 16=) 44$		1
	air is a mixture (of gases) / does not have a formula / does not have an M_{r} OWTTE		1
(b) $\begin{aligned} & \text { (i) } \\ & \\ & \text { ii) }\end{aligned}$	(thermal) decomposition		1
	M1 green M2 (to) black	Mark independently colours must be in the correct order	2
	$\mathrm{CuCO}_{3} \rightarrow \mathrm{CuO}+\mathrm{CO}_{2}$	ALLOW multiples and fractions	1
		IGNORE state symbols even if incorrect	
			Total 11

Question number	Answer	Notes	Marks
5 (a) (i) (ii)	M1 (compounds with) same molecular formula M2 different structural/displayed formulae M1 displayed formula of butane M2 displayed formula of methylpropane	IGNORE general formula/chemical formula ALLOW different structures/arrangement of atoms REJECT molecular formula in structure Accept either order	2
(b) (i) (ii) (iii)	ultraviolet/UV (radiation) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ Substitution	ALLOW ultraviolet/UV light/rays ALLOW multiple substitutions as long as the equation is balanced	1 1 1
(c)	An explanation that links the following two points M1 (has) all single bonds/only single bonds/ (has) no double/multiple bonds M2 (so) no other atoms can be added (to ethane)/no addition reactions	ALLOW contains the maximum number of hydrogen atoms /each carbon bonded to four hydrogen atoms ALLOW only undergoes substitution reactions	2
(d)	M1 with ethane bromine water stays orange/yellow M2 with ethene bromine water changes (from orange/yellow) to colourless/ is decolourised	ALLOW no (colour) change /not decolourised IGNORE no reaction ,no observation IGNORE brown REJECT any other colour IGNORE brown REJECT any other colour	2

(e)	An explanation that links the following three points M1 there are twice as many H atoms as C atoms in alkenes OR general formula of alkenes is $\mathrm{C}_{n} \mathrm{H}_{2 n}$ M2 (so alkenes) empirical formula is always CH_{2} M3 (alkanes)empirical formula of $\mathrm{C}_{2} \mathrm{H}_{6}$ is CH_{3} and empirical formula of $\mathrm{C}_{4} \mathrm{H}_{10}$ is $\mathrm{C}_{2} \mathrm{H}_{5}$ (shows they are different) Alkanes general formula is $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$ so can't divide by n	ALLOW examples of any two from $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{C}_{4} \mathrm{H}_{8}$	3

(f)	M1 $\frac{19.2}{12}$	$\frac{4.0}{1}$	$\frac{12.8}{16}$	$\frac{64.0}{80}$	O marks for upside down calculation or use of atomic numbers Ecf on incorrect atomic mass but can't be an atomic number 6,8 or 35		
M2	$\frac{1.6}{0.8}$	$\frac{4.0}{0.8}$	$\frac{0.8}{0.8}$	$\frac{0.8}{0.8}$			
OR	2	5	1	1	Symbols can be in any order M3 M		

Question number	Answer	Notes	Marks
6 (a)	Relights/ignites a glowing splint/spill		1
(b)	M1 3 bond pairs correct M2 rest of molecule fully correct Eg.	ALLOW any combination of dots and crosses M2 dep on M1	2
(c) (i) (ii)	all points plotted correctly to the nearest grid line (+-1/2 small square) best fit curve starting at 0 and levelling off at $94 \mathrm{~cm}^{3}$	Ecf possible from misplotted point	1 1
(d) (i) (ii)	An explanation that links the following three points M1 fewer particles (in the same volume) M2 fewer collisions per unit time/less frequent collisions M3 (so) rate of reaction decreases M1 curve starting at 0 and less steep than original curve M2 curve levelling off at $46-48 \mathrm{~cm}^{3}$ inclusive	REJECT if reference to less/more kinetic energy/less movement IGNORE less chance of collisions REJECT if reference to less/more kinetic energy/less movement MAX 1 mark can be awarded here If kinetic energy/particle movement mentioned in answer	3
(e)	An explanation that links the following two points M1 provides an alternative pathway/route M2 with lower activation energy		2
			$\begin{array}{\|l\|} \hline \text { Total } \\ 12 \\ \hline \end{array}$

Question number	Answer	Notes	Marks
7 (a)	A description that refers to the following six points M1 add sodium hydroxide (solution) M2 if a green precipitate forms it is an iron(II) $/ \mathrm{Fe}^{2+}$ compound M3 if a brown precipitate forms it is an iron(III) $/ \mathrm{Fe}^{3+}$ compound M4 add silver nitrate (solution to a fresh sample) M5 if cream precipitate forms it is a bromide/ Br^{-} M6 if white precipitate forms it is a chloride/Cl-	ALLOW add (aqueous) ammonia M2 and M3 dep on M1 ALLOW red-brown/orange-brown precipitate IGNORE addition of nitric acid REJECT addition of hydrochloric or sulfuric acid for M4 M5 and M6 dep on addition of silver nitrate	6
(b)	M1 moles of iron $=2.8 \div 56=0.05(0)$ M2 2 mol iron reacts with 3 mol chlorine M3 moles of Fe to react with $\mathrm{Cl}_{2}=\frac{0.060 \times 2}{3}=0.04(0)$ (so iron is in excess) OR M2 2 mol iron reacts with 3 mol chlorine/ 3 mol chlorine reacts with 2 mol iron M3 moles of Fe to react with $\mathrm{Cl}_{2}=\frac{0.060 \times 2}{3}=0.04(0)$ M4 0.04(0) $\times 56=2.24 \mathrm{~g}$ (so iron is in excess) OR M1 moles of iron $=2.8 \div 56=0.05(0)$ M2,M3 moles of Cl_{2} to react with $\mathrm{Fe}=\frac{0.05(0) \times 3}{2}=0.075$ (so 0.060 moles is not enough, so iron is in excess)	MAXIMUM 3 MARKS	3
(c) (i) (ii)	red H^{+}	ALLOW pink REJECT red-orange ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}$	1 1
			Total 11

Question number	Answer	Notes	Marks
8 (a)	M1 (electrostatic) attraction between (two) nuclei M2 and shared/bonding pair(s) of electrons OR M1 (electrostatic) attraction between shared/bonding pair(s) of electrons M2 and (two) nuclei	nuclei must be plural ALLOW nucleus of both/two atoms nuclei must be plural	2
(b)	An explanation that links the following three points M1 diamond is a giant covalent structure/giant lattice structure M2 there are (many) strong covalent bonds (which need to be broken) M3 large amount of (heat/thermal) energy needed to break the covalent bonds	IGNORE giant molecule IGNORE more energy no M2 or M3 if reference to intermolecular forces/ions in diamond	3
(c)	An explanation that links the following two points M1 (graphite has) delocalised electrons M2 (electrons) are mobile/move/flow	Ignore free electrons M2 dep on mention of electrons Ignore carry charge 0 marks if reference to ions in graphite or atoms moving	2
(d)	M1 (number of atoms $=$) $60 \times 6.0 \times 10^{23}$ M2 3.6×10^{25}	correct answer without working scores 2 answer must be in correct standard form to 1 decimal place	2
			Total 9

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
9 (a) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
the metal oxide/it loses oxygen \\
(the gas would escape and) it is flammable/could cause a fire/could cause an explosion \\
An explanation that links the following two points \\
M1 to stop oxygen/air entering the tube OWTTE \\
M2 as some of the metal would change back to the metal oxide/be oxidised/react with oxygen OWTTE \\
A description that refers to the following two points \\
M1 reheat the tube and contents(and reweigh when cool) \\
M2 (repeat) until constant mass is obtained OWTTE
\end{tabular} \& \begin{tabular}{l}
ACCEPT metal ions gain electrons Ignore metal oxide gains electrons \\
ALLOW repeat the instructions/repeat what I did \\
Reheat to constant mass scores 2
\end{tabular} \& 1
1
2
2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
M1 mass of oxygen \(=4.46-4.14\) OR \(0.32(\mathrm{~g})\) \\
M2 (moles of oxygen atoms \(=0.32 \div 16=\)) \(0.02(0)\) \\
(moles of \(M=\)) 0.02(0) \\
M1 \(\left(A_{r}\right.\) of \(\left.M=\right) 4.14 \div 0.02(0)\) \\
M2 207 \\
\(\mathrm{Pb} /\) lead
\end{tabular} \& \begin{tabular}{l}
correct answer without working scores 2 \\
ALLOW ecf on incorrect mass of oxygen atoms \\
ALLOW ecf as long as an attempt has been made to find moles \\
ALLOW ecf from (ii) \\
207 without working scores 2 \\
ALLOW ecf on incorrect mass of \(M\) or incorrect moles -use of 4.46 gives 223 (scores 1) \\
ALLOW ecf on incorrect \(A_{r}\) of \(M\) as long as calculation in (ii) and/or (iii) is viable Use of 4.46 gives 223 Francium (scores 1)
\end{tabular} \& 2

1

2
2
1
1

\hline \& \& \& Total 12

\hline
\end{tabular}

Question number	Answer	Notes	Marks
10 (a)	to remove excess/unreacted/undissolved/insoluble zinc/solid/metal		1
(b)	A description that refers to the following four points M1 heat the solution to evaporate some of the water/ to form a saturated solution/ to crystallisation point M2 leave the solution to cool /leave the solution for (more) crystals to form M3 filter off the crystals M4 suitable method of drying the crystals	Max 1 mark if solution evaporated to dryness If solution left to partially evaporate without heating only M3 and M4 can be awarded Decant/pour off solution/pick out crystals IGNORE references to washing e.g. dry between filter papers/dry in a warm oven/ leave to dry REJECT hot oven or direct heating with Bunsen burner No M4 if crystals are washed after drying	4
(c) (i) (ii)	M1 moles of zinc $=\frac{9.75}{65}$ OR $0.15(0)$ M2 mass of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=297 \times 0.15(0)(\mathrm{g})$ $=44.55(\mathrm{~g})$ M1 $36.4 \div 44.55 \times 100$ M2 81.7(\%)	$44.55 / 44.6(\mathrm{~g})$ without working scores 2 ALLOW 297 X 9.75/65 $=44.55 / 44.6$ for 2 marks $297 \times 9.75 / 30=96.52$ scores 0 ALLOW ecf from (i) ALLOW any number of sig figs except 1 but rounded correctly correct answer without working scores 2 use of 44.6 gives $81.6(\%) / 82$ use of 45 gives $80.9(\%) / 81$	2
			Total 9

