

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P71952A
Publications Code 4CH1_2C_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	silicon	ALLOW Si	1
(ii)	magnesium	ALLOW Mg	1
(iii)	bromine	ALLOW mercury / Hg	1
		ALLOW Br / Br ₂	
		REJECT bromide / Br-	
(iv)	2,8,5 / 2.8.5	ACCEPT diagram showing electron configuration	1
(v)	Na ₂ S	ALLOW Na ⁺ ₂ S ²⁻	1
(b)	An explanation that links the following two points		2
	M1 full outer shell / 8 electrons in outer shell / (electron configuration) 2.8		
	M2 (so) does not need to lose or gain (or share) electrons / e ⁽⁻⁾		
			Total 7

Question number	Answer	Notes	Marks
2 (a)	B (carbon dioxide) A is incorrect as there is more argon in the atmosphere than carbon dioxide C is incorrect as there is more nitrogen in the atmosphere than carbon dioxide D is incorrect as there is more oxygen in the atmosphere than carbon dioxide		1
(b) (i)	B (decomposition) A is incorrect as this is not an addition reaction C is incorrect as this is not an oxidation reaction D is incorrect as this is not a substitution reaction		1
(ii)	C (green to black) A is incorrect as copper(II) carbonate is not blue B is incorrect as copper(II) carbonate is not blue and copper(II) oxide is not orange D is incorrect as copper(II) oxide is not orange		1
(iii)	$CuCO_3 \rightarrow CuO + CO_2$	ALLOW multiples IGNORE state symbols even if incorrect	1
(c)	M1 (volume of oxygen =) 100 – 27 OR 73 (cm³) M2 (volume of air at start =) 280 + 100 OR 380 (cm³) M3 73 ÷ 380 × 100 OR 19.2 (%) M4 19 (%)	correct answer with or without working scores 4 ALLOW ECF throughout Use of 280 gives an answer of 26 scores 3 Alternative method M1 (volume of air left=) 280 + 27 OR 307 (cm³) M2 307 ÷ 380 x 100 OR 80.8 (%) M3 100 – 80.8 OR 19.2 M4 19 (%)	4

(d)	An explanation that links two of the following three points		2
	M1 carbon dioxide is a greenhouse gas AND	ACCEPT description of greenhouse effect e.g. carbon dioxide traps heat / infra-red rays in the atmosphere	
	M2 (that causes) climate change / global warming / global temperature rise		
	OR		
	M3 melting of polar icecaps / flooding / wildfires / sea levels rising	ALLOW oceans becoming more acidic / less basic /pH decreasing	
		REJECT reference to the ozone layer for M2 or M3	
		IGNORE reference to acid rain	
			Total 10

Question number		Answer		Notes	Marks
3 (a)	$C_6H_{12}O_6 \rightarrow 2C_2H_5$	OH + 2CO ₂		ACCEPT CH ₃ CH ₂ OH	2
	M1 both formulae co	rrect			
	M2 balancing of corre	ect formulae		M2 dep on M1 but if C ₂ H ₆ O given no M1 but allow M2 for correct balancing	
				IGNORE state symbols even if incorrect	
				ALLOW multiples and fractions	
(b) (i)				ACCEPT H₃PO₄	3
		Hydration	Fermentation	If formula alone	
	Reagents	ethene and steam	aqueous glucose	must be correct, but if name given and	
	Catalyst	phosphoric acid	enzymes in yeast	formula incorrect ignore formula	
	Temperature in °C	300	30	ALLOW sulphuric	
	Pressure in atmospheres	60 - 70	1	acid / H₂SO₄	
	annospiioi es			ACCEPT any temperature between 20 and 40 inclusive	
				ACCEPT any pressure between 60 and 70 inclusive	

An explanation that links one advantage and one disadvantage		4
advantage:		
M1 uses low(er) pressure / atmospheric pressure / 1 atm M2 so less energy needed / less costly equipment / safer	IGNORE cheaper	
OR	ress costly alone	
M1 uses low(er) temperature M2 so less energy / heat needed OR	IGNORE cheaper /less costly	
M1 glucose /sugar cane is a natural resource /is renewable M2 whereas ethene obtained from crude oil /ethene is non-renewable / ethene is a finite resource OR M1 yeast is a natural resource M2 whereas phosphoric acid is a manufactured catalyst		
disadvantage:		
M3 fermentation is slow(er) M4 fermentation is less efficient /so hydration is more efficient OR	ALLOW M3 fermentation is a batch process M4 whereas hydration is a continuous process (so more efficient)	
M3 ethanol is impure M4 so ethanol needs to be purified ORA	IGNORE reference to yield	
OR		
M3 growing sugar cane takes up land M4 that can be used to grow food crops		
	disadvantage advantage: M1 uses low(er) pressure / atmospheric pressure / 1 atm M2 so less energy needed / less costly equipment / safer OR M1 uses low(er) temperature M2 so less energy / heat needed OR M1 glucose /sugar cane is a natural resource / is renewable M2 whereas ethene obtained from crude oil / ethene is non-renewable / ethene is a finite resource OR M1 yeast is a natural resource M2 whereas phosphoric acid is a manufactured catalyst disadvantage: M3 fermentation is slow(er) M4 fermentation is less efficient / so hydration is more efficient OR M3 ethanol is impure M4 so ethanol needs to be purified ORA OR M3 growing sugar cane takes up land	disadvantage advantage: M1 uses low(er) pressure / atmospheric pressure / 1 atm M2 so less energy needed / less costly equipment / safer OR M1 uses low(er) temperature M2 so less energy / heat needed OR M1 glucose / sugar cane is a natural resource / is renewable M2 whereas ethene obtained from crude oil / ethene is non-renewable / ethene is a finite resource OR M1 yeast is a natural resource M2 whereas phosphoric acid is a manufactured catalyst disadvantage: M3 fermentation is slow(er) M4 fermentation is less efficient / so hydration is more efficient M3 ethanol is impure M4 so ethanol needs to be purified ORA OR M3 growing sugar cane takes up land

(c)	An explanation that links the following two points		2
	M1 oxygen would oxidise / react with ethanol / alcohol		
	M2 which would produce ethanoic acid / CH₃COOH	ALLOW acetic acid / vinegar	
	OR	IGNORE carboxylic acid	
	M1 fermentation needs to be anaerobic		
	M2 so ethanol / alcohol will be formed / otherwise only carbon dioxide and water would form		
(d) (i)	M1 60.0 13.3 26.7 12 1 16	0 marks for division by atomic numbers or upside-down calculation	3
	M2 5.0 13.3 1.67 M3 5.0 13.3 1.67 1.67 1.67 1.67	ALLOW any number of sig figs except 1 apart from 5 in M2 and M3	
	OR 2.99 7.96 1	ACCEPT alternative methods	
(ii)	H H H I I I H—C—C—O—H	Bond between O and H must be shown	1
		ACCEPT structure of propan-2-ol	
			Total 15

Question number	Answer	Notes	Marks
4 (a)	pipette		1
(b)	M1 (colour in potassium hydroxide) yellow		2
	M2 (colour in sulfuric acid) red	ALLOW pink	
(c)	to see the colour (change more) clearly (at the end- point) OWTTE		1
(d)	to mix the solutions (more thoroughly) OWTTE	ALLOW to speed up the reaction between the acid and alkali OWTTE	1
(e)	titres/results within (+ or -) 0.2 (cm ³ of each other)	ALLOW within 0.1	1
		REJECT > 0.2 or < 0.1	
(f)	M1 $n(H_2SO_4) = 0.0150 \times 0.180 \text{ or } 0.0027(0) \text{ (mol)}$	correct answer with or without working scores 3	3
	M2 $n(KOH) = 0.0027(0) \times 2 \text{ or } 0.0054(0) \text{ (mol)}$	answer to M1 × 2	
	M3 conc ⁿ = $(0.0054(0) \div 0.0250) = 0.216 \text{ (mol/dm}^3)$	answer to M2 ÷ 0.0250	
		ALLOW any number of sig figs except 1	
		common answers: 0.108 and 0.054 scores 2	
(g)	An explanation that links the following two points		2
	M1 an H⁺ ion is a proton		
	M2 the OH ⁻ (ion) reacts / bonds with the H ⁺ (ion) (to form water)	ALLOW donates a proton / H+ (ion) to the OH-	
		IGNORE accepts a proton	
			Total 11

Question number	Answer	Notes	Marks
5 (a)	M1 add sodium hydroxide (to the copper(II) sulfate solution)	ALLOW potassium hydroxide or aqueous ammonia	2
		No M1 if any incorrect reagent added	
	M2 blue precipitate (forms)	IGNORE qualifiers e.g. pale / dark etc.	
	OR	M2 dep on addition of a correct alkali	
	M1 flame test	ACCEPT description of flame test	
	M2 blue-green (flame)	ALLOW green	
		M2 dep on flame	
(b)	An description that refers to any three from		3
	M1 copper ions are positively charged / cations / Cu ²⁺ (ions)	ALLOW M1 and M3 for a fully correct half equation	
	M2 and are attracted to / travel to the negative electrode / cathode	i.e. $Cu^{2+} + 2e \rightarrow Cu$	
	M3 where they accept electrons		
	M4 and become (copper) atoms		
(c)	pink solid / deposit / coating / metal	ACCEPT pink-brown / orange-brown / brown / orange / red-brown	1
		REJECT red	
		REJECT precipitate	
(d) (i)	relights a glowing splint		1
(ii)	$2H_2O \rightarrow 4H^+ + O_2 + 4e^{(-)}$	$40H^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{(-)}$ scores 1	2
		IGNORE state symbols even if incorrect	
	M1 O ₂ + e ⁽⁻⁾ M2 equation fully correct	IGNORE any numbers in front of $O_2 + e^{(-)}$ and any other species	
,			
(iii)	electrons are lost	ALLOW H ₂ O / water loses electrons	1
			Total 10

_	uesti umbe		Answer	Notes	Marks
6	(a)	(i)	sulfuric acid / H₂SO₄	ACCEPT hydrochloric acid / HCl and nitric acid / HNO ₃ / phosphoric acid / H ₃ PO ₄	1
		(ii)	distinctive / sweet / fruity smell	ACCEPT an oily layer forms (on the surface)	1
		(iii)	methyl ethanoate	spelling must be correct	1
	(b)	(i)	C—O and O—H		1
		(ii)	An explanation that links the following two points		2
			M1 the same (two) bonds / C—O and O—H are broken and formed	ALLOW ecf if wrong bonds in (i)	
				IGNORE the same number of bonds are broken and formed	
			M2 energy needed to break bonds equals energy released when bonds form (so overall enthalpy change is 0)		
					Total 6

Question number	Answer	Notes	Marks
7 (a)	reduces the capacity of blood to transport oxygen round the body OWTTE	ALLOW carbon monoxide /it binds with haemoglobin	1
(b)	An explanation that links the following two points		2
	M1 no effect		
	M2 as increases rate of forward reaction and rate of backward reaction equally	M2 dep on M1 or missing	
(1)			2
(c) (i)	An explanation that links the following two points		2
	M1 yield decreases		
	M2 as (forward) reaction is endothermic (so equilibrium shifts to the LHS / reactants side)	ALLOW backward /reverse reaction is exothermic	
		M2 dep on M1 or missing	
		IGNORE references to Le Chatelier	
(ii)	An explanation that links the following two points		2
	M1 yield increases		
	M2 as there are fewer moles / molecules (of gas) on the left-hand side / there are 2 mol on LHS and 4 mol on RHS (so equilibrium shifts to the RHS /		
	products side) ORA	M2 dep on M1 or missing	
		IGNORE references to Le Chatelier	
(d)		correct answer with or without working scores 4	4
	M1 $n(H_2) = 6.6 \times 10^6 \div 2$ OR 3.3×10^6 (mol)	ACCEPT 3 300 000	
	M2 $n(CH_4) = 3.3 \times 10^6 \div 3$ OR 1.1×10^6 (mol)	ACCEPT 1 100 000	
	M3 vol(CH ₄) = $1.1 \times 10^6 \times 24$ OR 26 400 000 (dm ³)	M2 × 24	
	$M4\ 2.6 \times 10^7$	ACCEPT 2.64 × 10 ⁷	
		ALLOW ECF throughout	
		common answers: $7.9(2) \times 10^7$ scores 3 5.28×10^7 scores 3 1.584×10^8 scores 2	
			Total 11