Mark Scheme (Results)
November 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2023
Question Paper Log Number P73425A
Publications Code 4CH1_2C_MS_2311
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	B (9) A is incorrect as there are not 7 electrons in total C is incorrect as there are not 10 electrons in total D is incorrect as there are not 19 electrons in total		1
(b)	A (1-) B is incorrect as the charge on a bromide ion is not 1+ C is incorrect as the charge on a bromide ion is not 2- D is incorrect as the charge on a bromide ion is not 2+		1
(c)	C (grey solid) A is not correct as iodine is not a brown liquid at room temperature B is not correct as iodine is not a brown solid at room temperature D is not correct as iodine is not a purple gas at room temperature		1
(d)	An explanation that links the following three points M1 chlorine displaces bromine and iodine/chlorine reacts with bromide and iodide (ions) M2 bromine displaces iodine/iodine doesn't displace chlorine or bromine /bromine reacts with iodide (ions) /iodine doesn't react with chloride or bromide (ions) M3 most reactive chlorine bromine least reactive iodine	ALLOW chlorine has two reactions ALLOW iodine has no reactions ACCEPT chlorine is most reactive and iodine is least reactive ALLOW reactivity decreases down the group Deduct 1 mark only for incorrect use of ide or ine	3
			Total 6

Question number	Answer	Notes	Marks
2 (a) (i) (ii) (iii)	white solid/powder/ash $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$ An explanation that links the following two points M1 (oxygen is used in the reaction so) volume/amount of air/oxygen decreases /pressure decreases M2 (water level rises) to take the place of the oxygen /to equalise the pressure OWTTE	ALLOW (pale/light) grey solid/powder /ash REJECT white precipitate IGNORE bright/white flame ALLOW multiples and fractions IGNORE state symbols even if incorrect ALLOW arguments in terms of pressure	1
(b)	M1 percentage of oxygen in air = 21\% / percentage of air remaining $=79 \%$ M2 volume of air remaining $=\frac{2000 \times 79}{100}\left(\mathrm{~cm}^{3}\right)$ M3 $1580\left(\mathrm{~cm}^{3}\right)$	ALLOW 20\% / 80\% M2 subsumes M1 ALLOW ecf if incorrect percentage used use of 80% gives an answer of $1600\left(\mathrm{~cm}^{3}\right)$ correct answer of 1580 or 1600 without working scores 3 $420 / 400$ scores 2	3
(c)	The percentages of argon and carbon dioxide are very small OWTTE	ACCEPT references to approximate percentages ALLOW (all the oxygen has been removed and) only 1% / small amounts of the other gases remain	1
			Total 8

(c)	An explanation that links the following three points		3
	M1 in pure metal layers (of atoms/cations /particles) slide over each other (easily) OWTTE M2 in an alloy the different sized/larger atoms /cations/particles disrupt the structure/are more randomly arranged	ALLOW sheets/rows for layers	
M3 which prevents layers (of atoms/cations /particles) sliding over each other	REJECT molecules /intermolecular forces /negative ions /anions /ionic /covalent for 1 mark only	Deduct 1 mark if no mention of layers/sheets/rows	

Question number	Answer	Notes	Marks
4 (a)	Any two from M1 concentration of sodium hydroxide (solution) M2 rate of / same stirring M3 temperature of sodium hydroxide (solution)	IGNORE references to concentration of acid IGNORE references to volume / mass / amount of either solution ALLOW temperature of the room /environment	2
(b)	An explanation that links any two of the following points M1 polystyrene/it is a better insulator than glass OWTTE M2 less heat/thermal energy will be lost M3 using a polystyrene cup will lead to a more accurate/a higher temperature (change)	ALLOW polystyrene/it is an insulator ALLOW prevents heat loss /retains heat	2
(c) (i) (ii)	any value between 32.0 and 33.0 inclusive An explanation that links the following three points M1 the first line shows that as more sodium hydroxide is added the temperature rises (at a steady rate) M2 the point where the lines cross/ the highest temperature reached/ the volume of $21-22 \mathrm{~cm}^{3}$ of sodium hydroxide shows that the sodium hydroxide has neutralised the acid/ the acid has fully reacted M3 the second line shows that (there is no further reaction and) the cool sodium hydroxide solution decreases the temperature OWTTE	ACCEPT the temperature is directly proportional to the volume added ALLOW there is a positive correlation between the temperature and the volume added ALLOW the second line shows that there is no further reaction as the mixture cools down OWTTE	1 3

(d)	M1 mass of solution $=25+22$ OR 47 (g) $M 2 Q=m c \Delta T \quad O R \quad Q=47 \times 4.2 \times 35$ M3 6909 (J) M4 6.9 (kJ)	correct answer without working scores 4 ALLOW ecf from M1 if incorrect mass used e.g. use of 1,22 or 25 M2 subsumes M1 ALLOW ecf from M3 if correct conversion from J to kJ 147/3234/3675 (J) score 2 0.147 / 3.234 / 3.675 (kJ) score 3 ACCEPT any number of significant figures correctly rounded except 1	4
			Total 12

Question number	Answer	Notes	Marks
5 (a) (i) (ii)	$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Mg} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}$ M1 $2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Mg}$ M2 H_{2} M1 effervescence/fizzing/bubbles M2 magnesium becomes smaller/disappears	ALLOW multiples and fractions ALLOW $2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ REJECT $2 \mathrm{CH}_{4} \mathrm{COO}$ IGNORE state symbols even if incorrect IGNORE gas evolved ALLOW dissolves	2
(b) (i) (ii)	(concentrated) sulfuric acid $\mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right)$ A is incorrect as it is propyl methanoate B is incorrect as it is propyl ethanoate D is incorrect as it is methyl butanoate	ALLOW any suitable inorganic acid e.g. hydrochloric or nitric or phosphoric IGNORE dilute	1
(c) (i) (ii) (iii)	condensation (polymerisation) water M1 correct displayed ester functional group M2 rest of structure correct	ALLOW H2O ALLOW structure without extension bonds O can be on LHS instead of on RHS IGNORE brackets and n	1 1 2
(d)	(a polyester that) is biodegradable	ACCEPT can be degraded by bacteria ALLOW can be decomposed	1
			Total 11

| (d) | A description that refers to the following three
 points
 M1 add (dilute) hydrochloric acid (to the sodium
 carbonate) | ALLOW any suitable
 named acid
 REJECT any other
 incorrect reagent for M1
 and M2
 M2 bubble/pass the gas through limewater OR test
 (he gas with limewater on M1 or mention
 of adding acid |
| :---: | :--- | :--- | :--- |
| M3 (limewater) turns milky/cloudy | ALLOW white precipitate | |

Question number	Answer	Notes	Marks
7 (a)	An explanation that links the two points M1 in solid sodium chloride ions are in a fixed position/in a lattice/cannot move M2 when molten or in solution ions are free to move/flow	No marks if reference to electrons moving	2
(b) (i) (ii)	$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+(1) \mathrm{O}_{2}+4 \mathrm{e}^{-}$ chloride (ions)/(2) $\mathrm{Cl}^{-} /$it lose electrons	ALLOW multiples and fractions IGNORE state symbols even if incorrect ALLOW electrons are lost REJECT chlorine loses electrons	1
(c) (i) (ii)	(squeaky) pop with lighted splint An explanation that links any three of the following four points M1 solution/water contains hydrogen ions/ H^{+} M2 hydrogen ions $/ \mathrm{H}^{+}$are attracted to the negative electrode/cathode M3 hydrogen ions/ H^{+}gain electrons M4 and (combine in pairs to) form hydrogen molecules $/ \mathrm{H}_{2}$	REJECT glowing splint IGNORE sodium ions Can score M3 and M4 for fully correct half equation. $\text { i.e. } 2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{H}_{2}$	1 3
(d) (i)	M1 \sum bond energies on LHS $=2 \times 436+498$ OR $1370(\mathrm{~kJ})$ M2 \sum bond energies on RHS $=4 \times 463$ OR $1852(\mathrm{~kJ})$ $\text { M3 }(1370-1852)=-482(k J)$	Correct answer without working scores 3 ALLOW ecf on M1 and M2 ALLOW -241 (kJ) (for 1 mole of water) for all 3 marks sign required to score M3	3

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

