Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Chemistry (WCH14)
Paper 01 Unit 4: Rates, Equillibria and Further
Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023
Question Paper Log Number P75068A
Publications Code WCH14_01_MS_2310
All the material in this publication is copyright.
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT n credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewar answers showing correct application of principles and knowledge. Examiners should therefor carefully and consider every response: even if it is not what is expected it may be worthy of c

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examil the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essentia answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a que correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that makes sense. Do not give credit for correct words/phrases which are put together in a meani manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the r clear
- select and use a form and style of writing appropriate to purpose and to complex subject r
- organise information clearly and coherently, using specialist
vocabulary when appropriate. Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark s this does not preclude others.

Section A (multiple choice)

Question Number	Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is B (measurement of change in volume)	
	\boldsymbol{A} is incorrect because none of the gases is coloured	
C is incorrect because there is no loss or gain of mass		
	D is incorrect because there are no bases in the mixture	

Question Number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is D (quenching followed by titrating with acid)	
	\boldsymbol{A} is incorrect because nothing in the mixture is coloured	
B is incorrect because there is no change in volume		
C is incorrect because there is no loss or gain of mass		

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is $\mathbf{D ~ (1 6)}$	
	A is incorrect because doubling $\left[\mathrm{BrO}_{3}^{-}\right]$and $\left[\mathrm{Br}^{-}\right]$will both double the rate, doubling $\left[\mathrm{H}^{+}\right]$increases the rate by 2^{2}	
	B is incorrect because doubling $\left[\mathrm{BrO}_{3}^{-}\right]$and $\left[\mathrm{Br}^{-}\right]$will both double the rate, doubling $\left[\mathrm{H}^{+}\right]$increases the rate by 2^{2}	
	C is incorrect because doubling $\left[\mathrm{BrO}_{3}^{-}\right]$and $\left[\mathrm{Br}^{-}\right]$will both double the rate, doubling $\left[\mathrm{H}^{+}\right]$increases the rate by 2^{2}	

Question Number	Answer	Mark
3(a)) B is incorrect because the graph shows a reaction where the rate decreases as concentration of Q increases C is incorrect because the graph shown is correct when rate is plotted against concentration of Q D is incorrect because the graph shows a reaction where the rate increases as concentration of Q increases	(1)

Question Number	Answer	Mark
3(b)	The only correct answer is B (20s) \boldsymbol{A} is incorrect because the half-life for a first order reaction is constant C is incorrect because the half-life for a first order reaction is constant D is incorrect because the half-life for a first order reaction is constant	(1)

Question Number		Answer
$\mathbf{4}$	The only correct answer is $\mathbf{C}((-$ gradient $) \times R)$	Mark
	\boldsymbol{A} is incorrect because the gradient $=-E_{a} / \mathrm{R}$	
\boldsymbol{B} is incorrect because the gradient $=-E_{a} / \mathrm{R}$	(1)	
	\boldsymbol{D} is incorrect because the gradient $=-E_{a} / \mathrm{R}$	

Question Number	Answer	Mark
$\mathbf{5 (a)}$	The only correct answer is B (-364) A is incorrect because the value must be divided by 2 as there are 2 Cl C is incorrect because the signs are the wrong way round giving an endothermic value D is incorrect because the signs are the wrong way round giving an endothermic value and the value must be divided by 2 as there are 2 Cl	

Question Number	Answer	Mark
$\mathbf{5 (b)}$	The only correct answer is C (magnesium ions have a higher charge density)	(1)
	\boldsymbol{A} is incorrect because the radius of magnesium ions are smaller	
\boldsymbol{B} is incorrect because this is true but it does not explain the hydration enthalpy		
\boldsymbol{D} is incorrect because this is true but it does not explain the hydration enthalpy		

| Question
 Number | Answer |
| :--- | :--- | :---: |
| $\mathbf{6}$ | The only correct answer is $\mathbf{D}\left(K_{\mathrm{p}}=\left(p \mathrm{NO}_{2}\right)^{4} \times\left(p \mathrm{O}_{2}\right)\right)$
 \boldsymbol{A} is incorrect because solids are not included in the K_{p} expression and the value should be raised to the power not multiplied
 by the number from the equation
 \boldsymbol{B} is incorrect because solids are not included in the K_{p} expression
 \boldsymbol{C} is incorrect because the value should be raised to the power not multiplied by the number from the equation |

Question Number	Answer						Mark
7	The only correct answer is D (Acid 1	Conjugate base of Acid 1	Acid 2	Conjugate base of Acid 2)	(1)
		HCl	Cl^{-}	HCOOH_{2}^{+}	HCOOH		
	\boldsymbol{A} is incorrect because the conjugate bases are the wrong way round \boldsymbol{B} is incorrect because HCOOH_{2}^{+}is an acid not a base and HCOOH is a base and not an acid in this reaction C is incorrect because HCOOH_{2}^{+}is an acid not a base and so should be exchanged with HCOOH						

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is C (the dissociation of water is endothermic, so the concentration of hydrogen ions is higher at $100^{\circ} \mathrm{C}$ than at $25^{\circ} \mathrm{C}$)	(1)
	A is incorrect because at lower pH the concentration of hydrogen ions is higher B is incorrect because at lower pH the concentration of hydrogen ions is higher and the reaction is endothermic D is incorrect because the forward reaction is endothermic	

Question Number	Answer	Mark
$\mathbf{9}$	The only correct answer is D (4, 3, 1, 2)	(1)
	A is not correct because Beaker 4 has the highest pH	
	B is not correct because Beaker 4 has the highest pH	
C is not correct because Beaker 4 has the highest pH		

Question Number	Answer	Mark
$\mathbf{1 0 (a)}$	The only correct answer is D (lithium tetrahydridoaluminate(III))	(1)
	\boldsymbol{A} is incorrect because these are the reagents for the reverse reaction	
B is incorrect because this will not reduce a carboxylic acid		
C is incorrect because this will not reduce the carboxylic acid to the primary alcohol		

Question Number	Answer	Mark
$\mathbf{1 0 (b)}$	The only correct answer is D $(8.80 \mathrm{~g})$	
	\boldsymbol{A} is incorrect because this answer comes from swapping the M_{r} values	
	B is incorrect because this assumes that 90% of methylpropanoic acid is required to give this yield	
C is incorrect because this assumes the yield is 100%		

Question Number	Answer	Mark
$\mathbf{1 0 (c)}$	The only correct answer is B (anhydrous)	
	\boldsymbol{A} is incorrect because the reaction requires no catalyst	
C is incorrect because the reaction works at room temperature.		
	D is incorrect because ether solvent is required for use with LiAlH	

Question Number	Answer	Mark
$\mathbf{1 0 (d)}$	The only correct answer is A (it can be carried out at room temperature)	
	\boldsymbol{B} is incorrect because a catalyst is not required	
C is incorrect because the atom economy is lower as HCl is formed rather than $\mathrm{H}_{2} \mathrm{O}$		
\boldsymbol{D} is incorrect because the formation of toxic HCl is a disadvantage	(1)	

Question Number	Answer	Mark
11	The only correct answer is D) \boldsymbol{A} is incorrect because it is a single repeat unit \boldsymbol{B} is incorrect because it is missing a dicarboxylic acid group C is incorrect because the groups are reversed	(1)

Question Number	Answer	Mark
12	The only correct answer is D(44.0632 43.9898) \boldsymbol{A} is not correct because 27.9949 is the mass of CO and 29.0395 is the mass of $\mathrm{C}_{2} \mathrm{H}_{5}$ B is not correct because 27.9949 is the mass of CO and 29.0395 is the mass of $\mathrm{C}_{2} \mathrm{H}_{5}$ C is not correct because 43.9898 is the mass of propane and 44.0632 is the mass of carbon dioxide	(1)

Question Number	Answer	Mark
13(a)	The only correct answer is B (0.38)	
	\boldsymbol{A} is incorrect because this is the ratio of the spot to the top of the chromatogram slide	
C is incorrect because this is the ratio of the distanced travelled by X compared to Y		
D is incorrect because this is (1 - the correct answer)		

Question Number	Answer				Mark
13(b)	The only correct answer is C (A is incorrect because a stronger atran B is incorrect because a stronger atran D is incorrect because a weaker attra	is weaker than the attraction between X and the stationary phase tion to the stationary phase mean tion to the stationary phase mean ion to the mobile phase means it	is stronger than the attraction between X and the mobile phase it will move more slowly it will move more slowly ill move more slowly)	(1)

Section B

Question Number	Answer	Additional Guidance	Mark
14(a)(i)	An answer that makes reference to the following point: - 2-hydroxypropanenitrile	Allow 2-hydroxypropannitrile Allow 2-hydroxypropanitrile Do not award 2-hydroxo versions of allowable answers Do not award 2-hydroxyl versions of allowable answers Do not award Hydroxy-2-propanenitrile Do not award nitride versions of allowable answers Do not award additional numbers e.g. 2-hydroxypropane-2-nitrile Ignore additional spaces, omission of hyphen, use of comma instead of hyphen e.g. 2 hydroxy propanenitrile	(1)

Question Number	Answer		Additional Guidance	Mark
14(a)(ii)	An answer that makes reference to the following points: - structure of the intermediate carbanion including negative charge anywhere on the ion or outside a bracket around the ion Step 1 mechanism - lone pair of electrons on C of $\mathrm{C} \equiv \mathrm{N}^{-}$ - arrow from lone pair on C of $\mathrm{C} \equiv \mathrm{N}^{-}$to $\mathrm{C}(\delta+)$ in ethanal - arrow from $\mathrm{C}=\mathrm{O}$ bond to, or just beyond, O - dipole on $\mathrm{C}=\mathrm{O}$ Step 2 mechanism - lone pair on O - arrow from lone pair on O of intermediate to H of $\mathrm{H}-\mathrm{C} \equiv \mathrm{N} / \mathrm{HCN}$ - arrow from $\mathrm{H}-\mathrm{C}$ bond to C , or just beyond C , of $\mathrm{H}-\mathrm{C} \equiv \mathrm{N} / \mathrm{HCN}$	(1) (3)	Intermediate is stand alone and scores (1) Allow - CH_{3} Allow - CN Ignore absence of lone pair Triple bond does not need to be shown Do not award $\mathrm{C} \equiv \mathrm{N}-\mathrm{C}$ Ignore dipole on HCN even if incorrect Do not award Step 2 point 2 for + ve charge on H For the mechanism all 7 points scores 3 marks 4,5 or 6 points scores 2 marks 2 or 3 points scores 1 mark Only 1 step point scores 0 step marks	(4)

Question Number	Answer	Additional Guidance	Mark
14(a)(iii)	An answer that makes reference to the following points: This mark is for the description of nucleophilic attack - in the first step of the reaction the (negative) cyanide ion $/^{-} \mathrm{C} \equiv \mathrm{N}$ attacks a $\delta+$ centre / seeks out regions of low electron density - two substances join together to make one	Mark independently Allow donates a pair of electrons Allow seeks out positive charge / centre Allow carbon (of the $\mathrm{C}=\mathrm{O}$) is positive Ignore acts as a nucleophile Ignore general descriptions of nucleophile which are not specific to CN^{-} Do not award just CN (with no charge) Allow CN^{-}is added onto the ethanal with nothing substituted / eliminated / with no other product formed. Allow there is only one product / no other molecule is formed Allow there are fewer products than reactants Allow hydrogen cyanide and ethanal join together Allow unsaturated compound becomes more saturated Allow a π (pi) bond is broken and (two) single bonds are made Allow HCN is joined/bonded onto ethanal Ignore just $\mathrm{HCN} / \mathrm{CN}^{-}$is added onto the ethanal Ignore added	(2)

Question Number	Answer		Additional Guidance	Mark
14(b)	An answer that makes reference to the following points: - because the product is a racemic mixture / equal concentrations of both enantiomers are formed - as the cyanide / nitrile ion attacks / approach from above and below the plane of the $\mathrm{C}=\mathrm{O}$ bond equally	(1) (1)	Marks are standalone Allow two mirror images are formed in equal amounts / concentrations Accept can attack / approach equally from either side / both sides / opposite sides / top and bottom of the plane of the $\mathrm{C}=\mathrm{O}$ bond Ignore 'both directions' or 'two directions' without 'opposite' Do not award from any sides	(2)

(Total for Question 14 = 9 marks)

Question Number	Answer		Additional Guidance	Mark
15(a)(i)	- calculation of moles of oxygen at equilibrium - calculation of moles of NO at equilibrium - calculation of moles of NO_{2} at equilibrium	(1) (1) (1)	Example of calculation $=7.000 \div 32=0.21875 / 0.219(\mathrm{~mol})$ Allow 7/32 $=$ moles of oxygen $\mathrm{x} 2=0.4375 / 0.438(\mathrm{~mol})$ Allow 7/16 $\begin{aligned} & =\text { total moles }- \text { moles of } \mathrm{O}_{2}-\text { moles of } \mathrm{NO} \\ & =0.69625-0.21875-0.4375=0.0400(\mathrm{~mol}) \end{aligned}$ Allow TE throughout Ignore SF	(3)

Question Number	Answer	Additional Guidance	Mark
15(c)(i)	An answer that makes reference to the following point: - the reactants / NO and O_{2} are colourless but the product / NO_{2} is reddish brown / coloured	Allow just $\mathrm{NO} / \mathrm{O}_{2}$ is colourless and NO_{2} is brown Allow just nitrogen dioxide / product is reddish brown / coloured / dark colour Allow any combination of yellow, red, orange and brown for the colour of NO_{2} Allow measure the time for the brown gas to form Allow the reaction goes from colourless to brown Ignore just 'there will be a colour change' / mixture will darken Ignore NO_{2} is a different colour form NO and O_{2} Do not award NO is coloured so there is a colour change Do not award NO is yellow / red / orange / brown	(1)

Question Number	Answer	Additional Guidance	Mark
15(c)(ii)	- rearrangement of rate equation expression and inserting values - calculation of k and units	Example of calculation $\begin{align*} & =6.87 \times 10^{-4} \div\left(\left(6.50 \times 10^{-2}\right)^{2} \times 1.25 \times 10^{-2}\right) \tag{1}\\ & =13.008 / 13.0 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \end{align*}$ Correct answer with no working scores (2) Correct numerical answer with incorrect units scores (1) Allow units in any order Allow dm ${ }^{6} / \mathrm{mol}^{2} \mathrm{~s}$ $0.84554 / 0.846 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (not squaring 6.50×10^{-2}) scores (1) for final value and units for M2 Ignore SF except 1SF	(2)

Question Number	Answer	Additional Guidance	Mark
15(c)(iii)	An answer that makes reference to the following point - a three particle collision is unlikely	Accept it is unlikely that more than two molecules will collide / Allow hard / difficult / impossible instead of unlikely Allow there are three molecules involved in the reaction Ignore it is a third order reaction Do not award just three moles colliding / just three reactants colliding	(1)

Question Number	Answer		Additional Guidance	Mark
15(c)(iv)	An answer that makes reference to the following points: - adding the two steps together gives the overall equation - the steps do not match the rate equation because the slow step should be the second step	(1)	Allow the two steps match the overall equation as the reactants and products are the same Allow $\mathrm{N}_{2} \mathrm{O}_{2}$ is formed then reacts / cancels out / is an intermediate Ignore just the overall equation is $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ Allow it does not match because there is no oxygen in the slow step / rate determining step / rds Allow because in this mechanism oxygen is zero order / is not first order Allow because with these steps the rate equation would be rate $=k[\mathrm{NO}]^{2}$	(2)

Question Number	Answer	Additional Guidance	Mark
16(a)(i)	- calculation of the standard entropy of the reactants - calculation of the standard entropy of the products - calculation of the entropy change (products reactants)	Example of calculation Penalise units once only $\begin{align*} & =87.4+(3 \times 197.6)=(680.2)\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \tag{1}\\ & =(2 \times 27.3)+(3 \times 213.6)=(695.4)\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & =(695.4-680.2)=(+) 15.2\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{align*}$ Ignore SF in final answer except 1 SF Correct answer with no working scores (3) Allow TE	(3)

Question Number	Answer	Additional Guidance	Mark
16(a)(ii)	- calculation of the standard enthalpy of formation of the reactants - calculation of the standard enthalpy of formation of the products - calculation of the enthalpy change (products reactants)	Example of calculation $\begin{aligned} & =-824+(3 \times-111)=\left(-1157\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\right) \\ & =3 \times-394=(-1182)\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \\ & =(-1182)-(-1157)=-25\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ $-2339\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores M1 and M2 $+25\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores M1 and M2 Ignore calculates the enthalpy change and then goes on to calculate $\Delta S_{\text {surroundings }}$ BUT allow the equations in (a)(iii) Ignore SF except 1 SF Correct answer with no working scores (3)	(3)

Question Number	Answer	Additional Guidance	Mark
16(a)(iii)	An answer that makes reference to the following points: Either (using entropy arguments) - $\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}$ and $\Delta S_{\text {surroundings }}=-\Delta H \div T$ - (ΔH is negative so) $\Delta S_{\text {surroundings }}$ or $-\Delta H \div T$ is (always) positive and $\Delta S_{\text {system }}$ is positive - $\Delta S_{\text {total }}$ is positive (at all temperatures) and so the reaction is feasible (at all temperatures) OR (using Gibbs free energy arguments) - $\Delta G=\Delta H-T \Delta S$ - (ΔS is positive so) $T \Delta S$ or ΔS is (always) positive and ΔH is negative - ΔG is (always) negative and so the reaction is (always) feasible	Candidates may use their values instead of symbols Penalise omission of Δ once only $\begin{equation*} \Delta S_{\text {total }}=\Delta S_{\text {system }}-\frac{\Delta H}{\mathrm{~T}} \quad \text { scores M1 } \tag{1} \end{equation*}$ Allow either equation described in words Allow spontaneous Allow spontaneous Allow TE on values in (a)(i) and (a)(ii)	(3)

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 6 (b) (i i) ~}$ | An answer that makes reference to the following points:
 because this temperature cannot be achieved in a Blast
 Furnace | Mark
 Allow the temperature in the Blast Furnace is too low
 Allow the temperature required is too high
 Ignore temperature required is very high
 Ignore the energy needed is too high
 Ignore activation energy is too high
 Ignore cost |

(Total for Question 16 = 14 marks)

Indicative content

- IP1 sodium carbonate solution
/ sodium hydrogencarbonate solution gives fizzing (due to the formation of carbon dioxide)
- IP2 identifies butanoic acid is the only (carboxylic) acid / compound with an acidic proton / only compound with $-\mathrm{COOH}$
- IP3 Tollens' reagent / ammoniacal silver nitrate gives a silver mirror
- IP4 identifies 4-hydroxybutanal, which is the only aldehyde / only compound containing - CHO
- IP5 iodine and sodium hydroxide (solution) gives a yellow precipitate / antiseptic smell
- IP6 identifies 3-hydroxybutanone, which is the only compound with a $\mathrm{CH}_{3} \mathrm{CO}$ - group / only compound with a methyl ketone group

1 IP for each test and positive result,
1 IP for the compound and the functional group.
Compound IP dependent on correct test or very near miss
Allow react with alcohol and (conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ and fruity smell for IP1 BUT deduct one reasoning mark (as ethyl ethanoate also has a fruity smell)
Allow reactive metal such as magnesium giving fizzing but do not award sodium / potassium
Allow produces gas
Ignore produces CO_{2} / bubbling through limewater
Allow butanoic acid is a carboxylic acid

Accept Fehling's / Benedict's test gives a red precipitate

Allow has a carbonyl group which can be oxidised Allow 4-hydroxybutanal is an aldehyde

Allow 'use of the triiodomethane / iodoform test / iodoform reaction' / alkaline iodine

Accept is the only compound with a secondary OH group attached to a methyl group

If IP3 (and IP4) OR IP5 (and IP6) have been scored,
Allow 2,4 DNP and red/orange ppt as an alternative to the other pair of IPs (IP3 \& IP4 or IP5 \& IP6) BUT deduct 1 reasoning mark
Ignore Brady's reagent / 2,4 DNP other than as above

		Ignore indicator / PCl / hydrolysis of ethyl ethanoate / acidified potassium dichromate(VI) / ethyl ethanoate has a fruity / gluey smell

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :--- | :--- |
| $\mathbf{1 7 (b) (i)}$ | An answer that makes reference to the following point: | |
| -they / all (four isomers) have four carbon
 environment / produce four peaks |
 Allow they have the same number of peaks
 Allow they all have four carbons in different
 environments
 Allow they / all (four) have the same number of carbon
 environments / peaks
 Ignore just they all have four carbons
 Ignore they have the same molecular formula
 Ignore they have the same proton environments
 Ignore they all have five different proton environments
 Do not award they have the same peaks
 Do not award the wrong number of carbon atoms
 Do not award all have four different proton
 environments | |

Question Number	Answer		Additional Guidance			Mark
17(b)(ii)	- Two correct numbers of peaks - Third correct number of peaks - Fourth correct number of peaks		Name	Skeletal structure	Number of peaks	(3)
			butanoic acid		4	
			4-hydroxybutanal		5	
			ethyl ethanoate		3	
			3-hydroxybutanone		4	

Question Number	Answer	Additional Guidance	Mark
17(b)(iii)	An answer that makes reference to the following point: - butanoic acid / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and the hydrogen / proton in COOH	If both are given, both must be correct May be shown on a labelled diagram Allow any formula showing structure including skeletal formula to identify the acid Allow COOH to indicate the proton If name and formula are given both must be correct Do not award positive ions such as $[\mathrm{COOH}]^{+}$	(1)

Question Number	Answer		Additional Guidance	Mark
17(b)(iv)	An answer that makes reference to the following points: - the quintet results from a hydrogen with four hydrogens on adjacent carbons / the hydrogen is split by four other hydrogens - because 4-hydroxybutanal has (a carbon with) a hydrogen / two hydrogens with four hydrogens on adjacent carbons	(1) (1)	This marking point is to justify the quintet. This may be scored within M2 Ignore next to a carbon with 4 hydrogens attached? This marking point justifies 4-hydroxybutanal as the isomer. May be shown by a diagram indicating the either the hydrogens giving the signal or the hydrogens causing the quintet in some way for example Do not award 4-hydroxybutanal and arguments related to having 5 hydrogen environments	(2)

(Total for Question 17 = 13 marks)
(Total for Section $B=52$ marks)

Question Number	Answer		Additional Guidance	Mark
18(a)(i)			Allow any alternative methods Ignore throughout $-\log _{10} 0.00120=2.9$	(3)
	Route 1 - Solving the expression to find $\left[\mathrm{H}^{+}\right]$ - M1 expression for K_{a}	(1)	$K_{\mathrm{a}}=\frac{\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}\right]}$	
			Allow use of $\left[\mathrm{H}^{+}\right]^{2}$ [HA] and / or [$\left.\mathrm{A}^{-}\right]$ Allow correct rearranged expression	
	- M2 uses expression to calculate $\left[\mathrm{H}^{+}\right]$	(1)	$\begin{aligned} & =\sqrt{1.38 \times 10^{-5} \times 0.12} \text { This also scores M1 } \\ & =0.0012869 / 1.2869 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	
	Then Either - M3 calculates pH	(1)	$\begin{aligned} & =-\log _{10} 0.0012869 \\ & =2.8905 / 2.9 \end{aligned}$	
	Or - M 3 calculates $\left[\mathrm{H}^{+}\right]$from given pH	(1)	$=0.0012589 / 1.2589 \times 10^{-3}$	
	Or - M3 calculates $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}\right]$	(1)	$=\frac{0.0012869^{2}}{1.38 \times 10^{-5}}=0.12001$	

Question Number	Answer	Additional Guidance	Mark
18(a)(iii)	(Neutralisation should occur at $30 \mathrm{~cm}^{3}$ because) - calculation of number of moles of pentanoic acid EITHER - calculation of volume of potassium hydroxide OR calculation of moles of potassium hydroxide assuming volume is $30 \mathrm{~cm}^{3}$	Example of calculation $\begin{align*} & =0.12 \times \frac{25}{1000}=0.003 / 3.0 \times 10^{-3}(\mathrm{~mol}) \\ & =\frac{0.003}{0.1} \times 1000=30\left(\mathrm{~cm}^{3}\right) \\ & =0.100 \times \frac{30}{1000}=0.003 / 3.0 \times 10^{-3}(\mathrm{~mol}) \tag{1} \end{align*}$	(2)

Question Number	Answer	Additional Guidance	Mark
18(a)(iv)	An answer that makes reference to the following point: - the titration between a weak acid and a strong base (results in pH greater than 7 / alkaline pH at the equivalence point)	Accept the product of the neutralisation / the potassium pentanoate / the pentanoate ion / the salt of weak acid forms an alkaline solution when dissolved in water Allow $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}+\mathrm{OH}^{-}$ Allow some H^{+}(from water) will combine with $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}$	(1)

Question Number	Answer	Additional Guidance	Mark
18(a)(v)	An answer that makes reference to the following points: - at $15.0 \mathrm{~cm}^{3}$ the concentration of pentanoic acid and pentanoate ion are equal / the pentanoic acid has been half-neutralised / this is the half-neutralisation point - (at the half-neutralisation point) $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$ and calculation of pH	Accept this is the half-equivalence point Allow numbers of moles of both $=0.0015(\mathrm{~mol})$ Allow concentration of both $=0.0375\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ This can be scored from a full buffer calculation $=-\log _{10} 1.38 \times 10^{-5}=4.8601 / 4.9$ The value of 4.9 from a full buffer calculation scores M2 Ignore $\mathrm{pH}=-\log _{10} 1.2589 \times 10^{-5}=4.9$ Ignore SF except 1 SF Accept use of Henderson-Hasselbalch. All of the following would score M1 and the first half of M2 $\begin{aligned} & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{0.0375}{0.0375} \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} 1 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+0 \end{aligned}$ Common incorrect calculations give values of 2.82, 3.14 and 4.35. These will generally score (0) BUT look for both moles or both concentrations calculated to score M1	(2)

Question Number	Answer		Additional Guidance	Mark
18(b)	An answer that makes reference to the following points:			(3)
	- because this region is a buffer / is the buffering region	(1)	Do not award the addition of buffer	
	- because there is a large reservoir of undissociated pentanoic acid (and pentanoate ions) in solution	(1)	Allow the concentration of pentanoic acid is high Ignore $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}$ and $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}$are both present in solution	
	EITHER			
	- added OH^{-}reacts with H^{+}and pentanoic acid dissociates and		Allow equations	
			$\begin{aligned} & \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH} \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}+\mathrm{H}^{+} \end{aligned}$	
			Allow descriptions using formulae	
	keeping the concentration of H^{+}(almost) constantOR		Allow ratio of $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}\right]$ hardly changes	
	pentanoic acid reacts with the small quantity of hydroxide ions added	(1)	Allow balanced equation $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$	
	and		Allow descriptions using formulae	
	keeping the concentration of H^{+}(almost) constant		Allow ratio of $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}^{-}\right]$to $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COOH}\right]$ hardly changes	
			Ignore just quoting the Henderson-Hasselbalch equation without explanation	

Question Number	Answer	Additional Guidance	Mark
18(c)(i)	An answer that makes reference to the following points: - at the start of the titration the solution will be red - it will change to orange before key point 2 / in the buffering region / at pH 3.2 and remains orange in the buffering region / until about $25 \mathrm{~cm}^{3}$ of KOH is added / until the pH reaches 4.4 - it will be yellow before the neutralisation point / before the vertical portion of the graph / before key point 3 / when pH is (about) 4.4 and is still yellow at key point 4	Allow answers describing colour at the pH values OR volumes of $\mathrm{KOH}(\mathrm{aq})$ added Allow it will be red at key point 1 Allow it will be red between key points 1 and 2 Allow at / before pH 3.2 Allow it changes to orange after adding a small volume / a few cm^{3} of KOH and remains orange until just before key point $2 /$ until about $20 \mathrm{~cm}^{3}$ are added Allow it gradually changes (from red) to orange around key point $2 /$ between and key points 1 and $2 / 3$ Allow any volume of KOH up to $5 \mathrm{~cm}^{3}$ for the change to orange and from $15-25 \mathrm{~cm}^{3}$ for change to yellow Allow it changes to yellow before key point 3 / at key point 3 and stays yellow Allow it will be yellow at key point 3 and stays yellow	(3)

Question Number	Answer		Additional Guidance	Mark
18(c)(ii)	An answer that makes reference to the following points: - bromothymol blue - (at the neutralisation point) there is a mixture of yellow and blue forms (of the indicator) so the solution appears green	(1) (1)	M2 dependent on M1 OR the selection of bromocresol green or bromocresol blue or bromophenol blue (which will not score M1) Allow indicator is yellow in acid and blue in alkali so green (at the neutralisation point) is observed Allow indicator is yellow below pH 6.0 and blue above pH 7.6 and grren at the neutralisation point Allow green is between yellow in acid and blue in alkali	(2)

(Total for Question $18=18$ marks)
 (Total for Section C = 18 marks)
 Total for Paper $=90$ marks

