Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Chemistry (WCH15)
Paper 01 Unit 5: Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023
Question Paper Log Number: P72995A
Publications Code: WCH15_01_MS_2310
All the material in this publication is copyright.
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist
vocabulary when appropriate. Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question number	Answer	Mark
$\mathbf{1}$	The only correct answer is \mathbf{D} (zinc)	(1)
	$\boldsymbol{A} \quad$ is incorrect because cobalt forms a stable Co^{2+} ion with incompletely-filled d-orbitals	
	$\boldsymbol{B} \quad$ is incorrect because copper forms a stable Cu^{2+} ion with incompletely-filled d-orbitals	
$\boldsymbol{C} \quad$ is incorrect because nickel forms a stable Ni^{2+} ion with incompletely-filled d-orbitals		

Question number	Answer	Mark
$\mathbf{2}$	The only correct answer is $\mathbf{D}\left(\mathrm{VO}_{3}{ }^{-}\right.$and $\left.\mathrm{VO}_{2}{ }^{+}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because chromium has oxidation numbers +6 and +3 respectively	
	$\boldsymbol{B} \quad$ is incorrect because copper has oxidation numbers +1 and +2 respectively	
$\boldsymbol{C} \quad$ is incorrect because manganese has oxidation numbers +3 and +4 respectively		

Question number	Answer	Mark
$\mathbf{3}$	The only correct answer is \mathbf{D} (6)	(1)
	$\boldsymbol{A} \quad$ is incorrect because although there are two different ligands, there are 6 atoms bonded to the central ion	
	$\boldsymbol{B} \quad$ is incorrect because the charge on Cr is 3+ but there are 6 atoms bonded to the central ion	
$\boldsymbol{C} \quad$ is incorrect because although there are 4 ligands, there are 6 atoms bonded to the central ion		

Question number	Answer	Mark
$\mathbf{4}$	The only correct answer is $\mathbf{C}\left(\mathrm{Ni}^{2+}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because Cu^{2+} gives a blue precipitate with aqueous sodium hydroxide and with aqueous ammonia	
	$\boldsymbol{B} \quad$ is incorrect because the precipitate formed with $F e^{2+}$ and aqueous ammonia is insoluble in excess ammonia	
$\boldsymbol{D} \quad$ is incorrect because V^{2+} is a purple solution		

Question number	Answer	Mark
$\mathbf{5}$	The only correct answer is $\mathbf{B}\left(\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{NH}_{4}^{+}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because the precipitate should not have a positive charge and the charges do not balance	
$\boldsymbol{C} \quad$ is incorrect because $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ is formed when the precipitate dissolves in excess aqueous ammonia		
$\boldsymbol{D} \quad$ is incorrect because $\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ should have a 2+ charge and the equation is not balanced		

Question number	Answer	Mark
$\mathbf{6}$	The only correct answer is $\mathbf{B}\left(\mathrm{Mn}^{2+}\right.$ acts as a catalyst; concentration of reactants decreases $)$	$\mathbf{(1)}$
	$\boldsymbol{A} \quad$ is incorrect because the kinetic energies of the particles do not change	
$\boldsymbol{C} \quad$ is incorrect because $\mathrm{MnO}_{4}{ }^{-}$is not a catalyst and the kinetic energies of the particles do not change		
$\boldsymbol{D} \quad$ is incorrect because $\mathrm{MnO}_{4}{ }^{-}$is not a catalyst		

Question number	Answer	Mark
$\mathbf{7}$	The only correct answer is $\mathbf{C}\left(\Delta S_{\text {total }}\right.$ and $\left.\ln K\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because $E_{- \text {cell }}^{o}$ is not directly proportional to $\Delta_{\mathrm{r}} H$	
$\boldsymbol{B} \quad$ is incorrect because $E_{- \text {cell }}^{o}$ is not directly proportional to $\Delta_{\mathrm{r}} H$ or to $\ln R T$		
	$\boldsymbol{D} \quad$ is incorrect because $E_{- \text {cell }}^{o}$ is not directly proportional to $\ln R T$	

Question number	Answer	Mark
$\mathbf{8}$	The only correct answer is A (standard reduction potential; most negative to most positive)	(1)
	$\boldsymbol{B} \quad$ is incorrect because the electrochemical series has the most negative standard electrode potential first	
$\boldsymbol{C} \quad$ is incorrect because standard cell potentials are determined from two standard electrode potentials		
D \quad is incorrect because standard cell potentials are determined from two standard electrode potentials and the		
electrochemical series has the most negative standard electrode potential first		

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is $\mathbf{A}\left(\mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}\right)$	(1)
	$\boldsymbol{B} \quad$ is incorrect because H^{+}ions cannot be produced in an alkaline solution	
	$\boldsymbol{C} \quad$ is incorrect because H^{+}ions cannot be produced in an alkaline solution	
$\boldsymbol{D} \quad$ is incorrect because H^{+}ions cannot be produced in an alkaline solution		

Question number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is B (negative; positive)	(1)
	$\boldsymbol{A} \quad$ is incorrect because $E_{-c e l l}^{o}=E_{r h s}-E_{\text {lhs }}$ so $0.17-(-0.40)=+0.57$ Vor $0.40-(-0.17)=+0.57 \mathrm{~V}$	
	$\boldsymbol{C} \quad$ is incorrect because $E_{-c e l l}^{o}=E_{r h s}-E_{\text {lhs }}$ so $0.17-(-0.40)=+0.57$ V or $0.40-(-0.17)=+0.57 \mathrm{~V}$	
	$\boldsymbol{D} \quad$ is incorrect because $E_{-c e l l}^{o}=E_{r h s}-E_{\text {lhs }} \operatorname{so} 0.17-(-0.40)=+0.57$ Vor $0.40-(-0.17)=+0.57 \mathrm{~V}$	

Question number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is C (magnesium)	(1)
	$\boldsymbol{A} \quad$ is incorrect because $1.635 \div 65.4=0.025 \mathrm{~mol}$ of zinc produced which gives a relative atomic mass of 24.3 for G	
	$\boldsymbol{B} \quad$ is incorrect because $1.635 \div 65.4=0.025 \mathrm{~mol}$ of zinc produced which gives a relative atomic mass of 24.3 for G	
$\boldsymbol{D} \quad$ is incorrect because $1.635 \div 65.4=0.025 \mathrm{~mol}$ of zinc produced which gives a relative atomic mass of 24.3 for G		

Question number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is \mathbf{D} (phenylamine)	(1)
	$\boldsymbol{A} \quad$ is incorrect because the lone pair of electrons on N in ammonia is not delocalised so can be donated more easily	
	$\boldsymbol{B} \quad$ is incorrect because the lone pair of electrons on N in butylamine is not delocalised so can be donated more easily	
	$\boldsymbol{C} \quad$ is incorrect because the lone pair of electrons on N in ethylamine is not delocalised so can be donated more easily	

Question number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is B $\left(\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because this is the structure of the uncharged molecule	
$\boldsymbol{C} \quad$ is incorrect because this structure would exist at pH less than 6.0		
$\boldsymbol{D} \quad$ is incorrect because this is the structure of the zwitterion		

Question number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is $\mathbf{A}\left(\mathrm{CH}_{2}=\mathrm{CHCOOH}\right)$	(1)
	$\boldsymbol{B} \quad$ is incorrect because phenol does not react with ethanol	
	$\boldsymbol{C} \quad$ is incorrect because 2-propen-1-ol does not react with sodium hydroxide or ethanol	
$\boldsymbol{D} \quad$ is incorrect because ethanoic acid does not react with hydrogen in the presence of a nickel catalyst		

Question number	Answer	Mark
$\mathbf{1 5 (a)}$	The only correct answer is A (further substitution by a nitro group occurs)	(1)
	$\boldsymbol{B} \quad$ is incorrect because nitrobenzene does not decompose at $80^{\circ} \mathrm{C}$	
	$\boldsymbol{C} \quad$ is incorrect because fuming sulfuric acid is needed for the substitution of $\mathrm{SO}_{3} \mathrm{H}$	
$\boldsymbol{D} \quad$ is incorrect because nitric acid does not decompose at $80^{\circ} \mathrm{C}$		

Question number	Answer	Mark
$\mathbf{1 5 (b)}$	The only correct answer is C (Sn and concentrated $\mathrm{HCl}(\mathrm{aq})$ are added first, then $\mathrm{NaOH}(\mathrm{aq})$ is added at the end)	(1)
	$\boldsymbol{A} \quad$ is incorrect because the acid and alkali would react to form a salt if they are added together	
$\boldsymbol{B} \quad$ is incorrect because the acid and alkali would react to form a salt if they are added together		
$\boldsymbol{D} \quad$ is incorrect because dilute hydrochloric acid would not react quickly enough with the tin		

Question number	Answer	Mark
15(c)	The only correct answer is B \boldsymbol{A} is incorrect because the chlorine is not bonded covalently to the nitrogen C is incorrect because the chlorine is not bonded covalently to the nitrogen D is incorrect because the charge should be on the nitrogen on the right not the nitrogen on the left	(1)

Question number	Answer	Mark
$\mathbf{1 5 (d)}$	The only correct answer is B (alkaline)	(1)
	$\boldsymbol{A} \quad$ is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution	
	$\boldsymbol{C} \quad$ is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution	
$\boldsymbol{D} \quad$ is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution		

Question number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is $\mathbf{D}\left(8\left(\mathrm{~cm}^{3}\right)\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because $2 \mathrm{~cm}^{3}$ of methane reacts with $4 \mathrm{~cm}^{3}$ of oxygen	
	$\boldsymbol{B} \quad$ is incorrect because $4 \mathrm{~cm}^{3}$ of methane would react with $4 \mathrm{~cm}^{3}$ of oxygen if they reacted in a 1:1 mole ratio	
	$\boldsymbol{C} \quad$ is incorrect because $6 \mathrm{~cm}^{3}$ would be the volume of argon if methane reacted with oxygen in a 1:1 mole ratio	

Question number	Answer	Mark
17	The only correct answer is \mathbf{A} (x is 30 and y is 40) B is incorrect because water is a liquid at room temperature C is incorrect because $10 \mathrm{~cm}^{3}$ of but-1-ene reacts with $60 \mathrm{~cm}^{3}$ of oxygen to form $40 \mathrm{~cm}^{3}$ of carbon dioxide so there is an initial decrease of $30 \mathrm{~cm}^{3}$ D is incorrect because $10 \mathrm{~cm}^{3}$ of but-1-ene reacts with $60 \mathrm{~cm}^{3}$ of oxygen to form $40 \mathrm{~cm}^{3}$ of carbon dioxide so there is an initial decrease of $30 \mathrm{~cm}^{3}$ and water is a liquid at room temperature	(1)

Question Number	Answer	Additional Guidance	Mark
18(b)(i)	An explanation that makes reference to the following points: (concentrated hydrochloric acid) - increases the concentration of H^{+}ions in the first equilibrium (and displaces it to the right) so increases the value of $E / E>1.33$ (V) (concentrated hydrochloric acid) - increases the concentration of chloride ions in the second equilibrium (and displaces it to the left) so decreases the value of $E / E<1.36$ (V) - the difference between 1.33 and 1.36 is (very) small and so using concentrated hydrochloric acid, $E_{\text {cell }}$ will be positive (so the reaction occurs)	Ignore any references to $E_{a} /$ energy Allow just 'when $\left[\mathrm{H}^{+}\right]$increases the first equilibrium shifts to the right' Allow because the coefficient for H^{+}is 14 , the position of equilibrium is very sensitive to the concentration of H^{+} Allow just 'when $\left[\mathrm{Cl}^{-}\right]$increases the second equilibrium shifts to the left' There must be some indication of the equilibrium referred to but can simply be $\mathrm{Cl}_{2}: 2 \mathrm{Cl}^{-}$ Allow answer in terms of first $E^{\text {o }}$ increasing (above 1.36 (V)) or second E^{o} decreasing (below $1.33(\mathrm{~V})$) so $E_{\text {cell }}$ will be positive for M3 Allow chlorine escapes and displaces second equilibrium to the left and decreases E° decreasing below $1.33(\mathrm{~V})$ so $E_{\text {cell }}$ will be positive Ignore references to anode/cathode	(3)

Question Number	Answer	Additional Guidance	Mark	
18(b)(ii)	- left hand side of cell diagram - central vertical lines and right hand side of cell diagram	Example of cell diagram: $\underset{\mathrm{Pt}(\mathrm{s})}{ }\left\|2 \mathrm{Cl}^{-}(\mathrm{aq})\right\| \mathrm{Cl}_{2}(\mathrm{~g}) \\|\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})\right],\left[2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right] \mid \mathrm{Pt}(\mathrm{s})$ Allow comma between Cl^{-}and Cl_{2} Do not award missing molar ratio but penalise once only Allow dotted / dashed vertical lines in the cell junction of the cell diagram Allow comma between dichromate ion and proton Allow vertical line between protons and chromium(III) ions Ignore missing / incorrect state symbols Ignore omission of water Ignore missing brackets/use of rounded brackets Penalise inclusion of electrons once only If no other mark is awarded, allow (1) for whole cell diagram written in reverse If no other mark is awarded, allow (1) for electrodes on correct sides but $2 \mathrm{Cl}^{-}$ and Cl_{2} in reverse order and / or $2 \mathrm{Cr}^{3+}$ and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}$in reverse order Award (1) if $\mathrm{Pt}(\mathrm{s})$ missing both sides but all otherwise correct	(2)	

Question Number	Answer	Additional Guidance	Mark
18(c)	- calculation of $\mathrm{mol}_{\mathrm{MnO}}^{4}-{ }^{-}$and $\mathrm{X}_{2} \mathrm{O}_{5}$ - deduction of mol ratio - final oxidation number of X	Example of calculation: $\mathrm{mol} \mathrm{MnO}_{4}^{-}=\frac{50.0 \times 0.02}{1000}=0.001 / 1.00 \times 10^{-3}$ and $\mathrm{mol} \mathrm{X}_{2} \mathrm{O}_{5}=\frac{25.0 \times 0.1}{1000}=0.0025 / 2.5 \times 10^{-3}$ or $\mathrm{mol} \mathrm{X}=\frac{25.0 \times 0.1 \times 2}{1000}=0.0050 / 5 \times 10^{-3}$ mol ratio $\mathrm{X}: \mathrm{MnO}_{4}^{-}$is $5: 1$ Allow calculation of moles of electrons per Mn and per X giving $5 \times 10^{-3}: 5 \times 10^{-3}$ (there are 5 electrons in the MnO_{4}^{-}half-equation so X 's oxidation number decreased by 1 to (+) 4 Allow X^{+4} Allow TE of oxidation number (+) 3 from $5: 2$ ratio or from $5 \times 10^{-3} \div 2.5 \times 10^{-3}=2 \text { so }+5-2=(+) 3$ Award (3) for oxidation number (+) 4 provided some working such as number of moles for M1	(3)

(Total for Question 18 = 13 marks)

Question Number	Answer	Additional Guidance	Mark
19(b)(i)	An answer that makes reference to the following point:	(1)	
reaction between two negative ions is slow due to repulsion	Allow negative species for negative ions Allow just 'the negative ions repel' Ignore references to unlikelihood of three negative ions colliding Do not award negative molecules		

Question Number	Answer		Additional Guidance	Mark
19(b)(ii)	- ionic equation involving iron(II) - ionic equation involving iron(III)	(1) (1)	$\begin{aligned} & \frac{\text { Examples of ionic equations }}{2 \mathrm{Fe}^{2+}}+2 \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{-2} \xrightarrow{2 \mathrm{Fe}^{3+}}+2 \mathrm{SO}_{4}^{2-} \\ & 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \end{aligned}$ Award (1) for balanced equations given in reverse order Allow (1) for two unbalanced equations with all species paired correctly Ignore state symbols even if incorrect	(2)

Question Number	Answer	Additional Guidance	Mark
19(c)(i)	An explanation that makes reference to the following points: - because it forms one dative (covalent) / co-ordinate bond (to Fe^{2+}) - using a lone pair (of electrons) on oxygen	Allow 'a dative/co-ordinate bond' Allow oxygen donates a pair of electrons Ignore water uses a lone pair of electrons	(2)

Question Number	Answer	Additional Guidance	Mark	
19(c)(ii)	An explanation that makes reference to the following points: - octahedral because there are six pairs of electrons	(1)	Allow this shown on a diagram Allow octahedral because there are 6 coordinate bonds/coordination number is 6 Ignore just octahedral because there are 6 ligands Do not award if bond angle other than $90^{\circ} /$ 90° and 180° stated Allow repel/arrange/shape to maximum separation Do not allow repulsion between atoms or water molecules or ligands	

Question Number	Answer	Additional Guidance	Mark
19(d)	An explanation that makes reference to the following points: - carbon monoxide replaces / takes the place of the oxygen molecule / ligand - (and it may be toxic) because it binds strongly to the Fe^{2+} ion	Accept ligand substitution / exchange reaction between oxygen and carbon monoxide COMMENT The question refers to oxygen being carried around and so there needs to be explicit reference and not just implied that to it being replaced/substituted or its place being taken Allow carbon monoxide forms a stronger bond to Fe^{2+} (than oxygen) Allow carbon monoxide binds (almost) irreversible / permanently to Fe^{2+} Allow carbon monoxide forms a more stable complex ion with Fe^{2+} / the complex formed has a larger equilibrium constant Allow prevents / reduces the amount of oxygen being carried to the cells / organs / around the body / blood - scores M2 not M1 Allow just carbon monoxide binds more strongly to haemoglobin/globin	(2)

Question Number	Answer		Additional Guidance	Mark
19(e)	An explanation that makes reference to the following points: - there are more particles / moles on the right (of the equation or there is an increase from 3 particles / moles / species on the left of the equation to 5 on the right - so $\Delta S_{\text {system }}$ increases / is positive (and the reaction is thermodynamically feasible)	(1) (1)	Allow species for particles Do not award reference to molecules / atoms /compounds Do not award incorrect numbers Allow $\Delta S_{\text {total }}$ is positive / increasing (and the reaction is thermodynamically feasible) Allow there is an increase in entropy (and the reaction is thermodynamically feasible) Ignore references to increases in disorder	(2)

	Alternative method - (M1) mass of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in $22.55 \mathrm{~cm}^{3}$ - (M2) calculation of $\mathrm{mol} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in $22.55 \mathrm{~cm}^{3}$ - (M3)calculation of $\mathrm{mol} \mathrm{Fe}^{2+}$ in $25.0 \mathrm{~cm}^{3}$ - (M4) calculation of mass of Fe^{2+} in 25.0 cm^{3} and calculation of total mass of $\left(\mathrm{Fe}^{2+}+\mathrm{Fe}^{3+}\right)$ - (M5) calculation of percentage of Fe^{3+}	Example of calculation $\operatorname{Mass}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)=\frac{2.56 \times 22.55}{1000}=0.057728(\mathrm{~g})$ $\operatorname{Mol}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)=\frac{0.057728}{216}=0.00026726 / 2.6726 \times 10^{-4}(\mathrm{~mol})$ $\mathrm{Mol} \mathrm{Fe}{ }^{2+}=0.00026726 \times 6=0.0016036 / 1.6036 \times 10^{-3}(\mathrm{~mol})$ Mass $\mathrm{Fe}^{2+}=0.0016036 \times 55.8=0.089481(\mathrm{~g})$ and Mass $\left(\mathrm{Fe}^{2+}+\mathrm{Fe}^{3+}\right)=\frac{6.28 \times 25.0}{1000}=0.157(\mathrm{~g})$ Mass $\mathrm{Fe}^{3+}=0.157-0.089481=0.067519(\mathrm{~g})$ and $\%$ of $\mathrm{Fe}^{3+}=\frac{0.067519 \times 100}{0.157}=43.0 / 43(\%)$

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	- equation for the formation of the electrophile - curly arrow within the circle/hexagon to anywhere towards or on Br^{+} - intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon atom and some part of the positive charge must be within the horseshoe - curly arrow from $\mathrm{C}-\mathrm{H}$ bond to anywhere in the hexagon, reforming the delocalised structure	See examples of mechanism on next page $\mathrm{FeBr}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{Br}^{+}+\mathrm{FeBr}_{4}^{-} /$ $\mathrm{Br}-\mathrm{Br}+\mathrm{FeBr}_{3} \rightarrow \mathrm{Br}^{8+}-\mathrm{Br}^{8-}-{ }_{-}^{--} \mathrm{FeBr}_{3}$ Allow this shown as part of the first step e.g. Allow partial charges on $\mathrm{Br}^{8+}-\mathrm{Br}^{8-}$ Do not award curly arrow starting on or outside the hexagon Do not award missing $+\delta^{+}$on electrophile Do not award curly arrow to a lone pair of electrons on Br^{+} Do not award dotted bonds to H and Br unless they are part of a 3D structure Ignore missing H^{+}/ involvement of FeBr_{4}^{-}in removal of H^{+} Ignore reformation of the catalyst even if incorrect	(4)

Examples of mechanism

Or

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(ii)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning. Comment: Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for reasoning. General points to note If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). Accept structures for names throughout If name and formula given both must be correct Deduct a reasoning mark if there is no comparison given for IP1 to IP3 Do not penalise unbalanced / incomplete equations Deduct (mark) from reasoning if any products given are incorrect	(6)

Indicative content

- IP1 - Similarity

All are attacked by / react with electrophiles

- IP2 - Types of reaction

Cyclohexene undergoes addition reactions but benzene and/or phenol undergo substitution reactions

- IP3 - Conditions

Cyclohexene and/or phenol react with (aqueous) bromine / without a catalyst and benzene needs
(a Friedel-Crafts catalyst / iron / iron(III) bromide)

- IP4 - Benzene

Benzene has delocalised electrons and is (kinetically) stable so the reaction has a high activation energy

- IP5-Cyclohexene

Cyclohexene has localised electron density in one π bond (which increases the electron density and makes it more susceptible to electrophilic attack)

- IP6 - Phenol

Phenol has a lone pair of electrons on the oxygen which is delocalised (within the ring)
and
makes it more susceptible to electrophilic attack

All three need to be mentioned for this IP - evidence for phenol reacting with an electrophile may be seen in IP6

Accept benzene forms monobromo product /
bromobenzene, cyclohexene forms dibromo product / 1,2 dibromocyclohexane and phenol forms tribromo product / 2, 4, 6-tribromophenol
Allow HBr is produced with benzene and phenol but cyclohexene only forms one product

Allow react under normal laboratory conditions / room temperature and pressure
Allow reference to $\mathrm{AlBr}_{3} / \mathrm{AlCl}_{3}$
This IP can be awarded if benzene equation has catalyst and other equation(s) do not
Ignore references to specific temperatures
Allow delocalised (π) electron ring in benzene is (very) stable
Allow delocalisation of electrons in π bonds which decreases the electron density (of the ring) and makes it less susceptible to electrophilic attack

If neither IP4 or IP5 awarded then allow (1) for benzene has delocalised electrons but cyclohexene does not

Allow the lone pair (of electrons) on the oxygen/OH in phenol
and increases the electron density of the (benzene) ring/overlaps with the delocalised ring

Question Number	Answer	Additional Guidance	Mark
20(b)	An answer that makes reference to the following points: - (M1) reagent for step 1 - magnesium and (dry) ether (reacting with bromobenzene) - (M2) first intermediate - phenyl magnesium bromide - (M3) reagent for step 2 - phenyl magnesium bromide with carbon dioxide / CO_{2} and (followed by hydrolysis with) dilute acid / H^{+} or methanal and dilute acid $/ \mathrm{H}^{+}$then oxidation - (M4) second intermediate - benzoic acid - (M5) reagent for step 3 - phosphorus(V) chloride / PCl_{5} - (M6) third intermediate - benzoyl chloride $\bullet(\mathbf{M} 7)$ reagent for step $4-$ ammonia $/ \mathrm{NH}_{3}$ added to an acyl chloride	Allow displayed / structural / skeletal formulae or any combination of these Ignore any references to heat/ incorrect inorganic products Examples of structures of intermediates: Do not award Allow (1) for M3 for the acid hydrolysis of benzonitrile Allow thionyl chloride/ $/ \mathrm{SOCl}_{2}$ Do not award dilute ammonia or ammonia added to benzoic acid M4 to M7 from scheme above can be awarded from benzoic acid however produced	(7)

Question Number	Answer	Additional Guidance	Mark
20(c)(i)	- repeat unit	Accept skeletal/displayed/structural formulae or combination thereof provided it is correct Example of repeat unit: Accept switching of monomer positions, e.g. Allow amide link to be drawn as $\mathrm{CONH} /-\mathrm{NH}-\mathrm{CO}-$ Allow 'cis' orientation of amide link Ignore bond lengths and bond angles Ignore brackets around repeat unit and n Ignore byproducts such as HCl Do not award additional incomplete repeat units Do not award hydrogen drawn with two single bonds, e.g. $-\mathrm{N}-\mathrm{H}-\mathrm{CO}$ Do not award missing continuation/extension bonds	(1)

Question Number	Answer	Additional Guidance	Mark
20(c)(ii)	An answer that makes reference to the following point: - because there is hydrogen bonding (and London forces between the chains) in a polyamide - (and this is) stronger than the London forces between the chains in polyalkenes (so more energy is needed to separate the polyamide molecules) or the London forces between the chains in polyalkenes are weaker (than hydrogen bonding so more energy is needed to separate the polyamide molecules)	Reference to breaking of covalent bonds scores (0) Ignore references to (permanent) dipole forces Allow 'it' for the polyamide since it is the subject of the question, so "it has hydrogen bonding" scores M1 Do not award if hydrogen bonding to water stated Do not award if hydrogen bonding shown by CH_{2} Do not award if ionic bonding or ions referred to Accept dispersion forces / attractions between temporary and induced dipoles for London forces Allow van der Waals' forces for London forces Allow London forces in polyalkenes are easier to overcome (than hydrogen bonding) Note that M2 is awarded for a comparison of the weakness of London forces to the strength of hydrogen bonding. Hence M2 is dependent on M1 or near-miss	(2)

Section C

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| 21(a) | 2-hydroxybenzoic acid | Accept 2-hydroxybenzenecarboxylic acid |
| | | Allow minor misspellings such as
 2-hydroxylbenzenoic acid |
| Ignore missing hyphen or comma instead of | | |
| hyphen | | |

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Answer	Additional Guidance
21(b)(i)	• carboxylic acid and ester and benzene / arene	$\begin{array}{l}\text { (1) } \\ \\ \end{array}$

Allow just 'carboxylic'

Allow phenyl for benzene/arene

Allow aromatic ring for benzene/arene

Ignore formulae of groups\end{array}\right]\) Do not award phenol | Do not award carbonyl |
| :--- |

Question Number	Answer	Additional Guidance	Mark
21(b)(iii)	- calculation of amount of salicylic acid - calculation of theoretical mass of acetyl salicylic acid - calculation of actual mass of acetyl salicylic acid	Example of calculation: mol salicylic acid used $=\frac{2.00}{138}=0.014493(\mathrm{~mol})$ theoretical mass of acetyl salicylic acid $=0.014493 \times 180$ $=2.6087(\mathrm{~g})$ TE on M1 actual mass of acetyl salicylic acid $=\frac{2.6087 \times 74.8}{100}=1.9513(\mathrm{~g})$ TE on M2 provided answer $\leq 5.00(\mathrm{~g})$ OR mass salicylic acid converted $=2.00 \times 0.748=1.496(\mathrm{~g})(1)$ mol salicylic acid converted $=\frac{1.496}{138}=0.01084(\mathrm{~mol})(1)$ mass acetyl salicylic acid formed $=0.01084 \times 180$ $=1.9513(\mathrm{~g})$ Ignore SF except 1 SF Correct answer scores without working scores (3)	(3)

| Question
 Number | Answer | Additional Guidance | (1) |
| :--- | :--- | :--- | :---: | :---: |
| 21(c)(i) | • completed equation | Example of equation: | |

Question Number	Answer	Additional Guidance	Mark
21(c)(ii)	An explanation that makes reference to the following points: - acetylsalicylic acid will dissociate less in acidic solution or acetylsalicylic acid dissociate more in alkaline solution - because the additional $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ions in the acid will shift the equilibrium position to the left - and OH^{-}/ hydroxide ions in the alkali will react with the H^{+}ions and shift the equilibrium position to the right	Penalise reference to change in K_{a} once only Allow reference to the stomach for 'acidic solution' Allow reference to small intestine for 'alkaline' If both stated then both must be correct Allow the backward reaction is favoured by the additional/higher $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ions in the acid Accept $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ and this shifts the equilibrium position to the right Allow $-\mathrm{COOH}+\mathrm{OH}^{-} \rightarrow-\mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ Or carboxylic acid group reacts with /neutralises the OH^{-} and this shifts the equilibrium position to the right/ favours the forward reaction	(3)

Question Number	Answer	Additional Guidance	Mark
21(d)	• methanol $/ \mathrm{CH}_{3} \mathrm{OH}$	Allow displayed formula / combination of structural and displayed formula If name and formula are given then both must be correct Allow methyl alcohol Ignore reference to acid catalyst/ $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HCl} /$ heat	(1)
		Do not award methanal Do not award $\mathrm{CH}_{4} \mathrm{O}$	

Question Number	Answer		Additional Guidance					Mark
21(e)	- chemical shift ranges for OH and CH_{3} in acetylsalicylic acid - chemical shift ranges for OH and CH_{3} in methyl salicylate	(1) (1)	Example of table:					(2)
				Acetyls	cylic acid	Methyl	alicylate	
			$\begin{array}{\|l} \hline \text { Type of } \\ \text { proton } \end{array}$	OH	CH_{3}	OH	CH_{3}	
			$\begin{aligned} & \hline \text { Chemical } \\ & \text { shift / } \\ & \text { ppm } \\ & \hline \end{aligned}$	$\begin{gathered} 10.0- \\ 12.0 \end{gathered}$	1.6-2.8	3.8-7.6	$2.8-4.3$	
			Allow ranges in reverse order e.g. $12.0-10.0$ Allow any range within these ranges $11.8-10.2$ If no other mark is awarded, allow (1) for any two correct ranges If no other mark awarded, allow (1) for any three single values within the correct ranges or two single values with one acceptable range					

Question Number	Answer	Additional Guidance	Mark
21(f)	- (M1) calculation of mol NaOH added at start - (M2) calculation of mol HCl used in titration - (M3) calculation of mol NaOH remaining in $250 \mathrm{~cm}^{3}$ - (M4) calculation of mol acetylsalicylic acid reacted - (M5) calculation of acetylsalicylic acid mass - (M6) calculation of percentage of acetylsalicylic acid and deduction of Brand of tablet	Example of calculation: $\mathrm{mol} \mathrm{NaOH}=\frac{25.0 \times 1.00}{1000}=0.025 / 2.5 \times 10^{-2}(\mathrm{~mol})$ $\mathrm{mol} \mathrm{HCl}=\frac{16.95 \times 0.100}{1000}=0.001695 / 1.695 \times 10^{-3}(\mathrm{~mol})$ (mol NaOH remaining in $25.0 \mathrm{~cm}^{3}=0.001695 / 1.695 \times 10^{-3}(\mathrm{~mol})$) mol NaOH remaining in $250 \mathrm{~cm}^{3}=0.01695 / 1.695 \times 10^{-2}(\mathrm{~mol})$ $\mathrm{mol} \mathrm{NaOH}=0.025-0.01695=0.00805 / 8.05 \times 10^{-3}(\mathrm{~mol})$ mol acetylsalicylic acid $=\frac{0.00805}{2}=0.004025$ mass acetylsalicylic acid $=0.004025 \times 180=0.7245(\mathrm{~g})$ percentage of acetylsalicylic acid $=\frac{0.7245 \times 100}{0.760}$ $=95.329(\%)$ and Brand B Allow TE at each stage Brand / percentage with no working scores (0) Ignore SF except 1 SF in the final mass calculated Ignore incorrect intermediate units Do not credit a division of moles by 2 if carried out before the subtraction	(6)

